O¥EEE | © serena

ChangeMan ZMF

XML Services User’s Guide

© Copyright 2001 - 2023 Micro Focus or one of its affiliates.

This document, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. Except as permitted by
such license, no part of this publication may be reproduced, photocopied, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
recording, or otherwise, without the prior written permission of Serena. Any reproduction
of such software product user documentation, regardless of whether the documentation is
reproduced in whole or in part, must be accompanied by this copyright statement in its
entirety, without modification.

The only warranties for products and services of Micro Focus and its affiliates and licensors
("Micro Focus") are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional
warranty. Micro Focus shall not be liable for technical or editorial errors or omissions
contained herein. The information contained herein is subject to change without notice.

Contains Confidential Information. Except as specifically indicated otherwise, a valid license
is required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data
for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Third party programs included with the ChangeMan ZMF product are subject to a restricted
use license and can only be used in conjunction with ChangeMan ZMF.

Product version: 8.2 Patch 7
Publication date: January 2023

Chapter 1:

Chapter 2:

About This Book

Software Versions
Audience

Scope

Related Topics

Related Documents
Typographical Conventions
Manual Organization

XML Services Concepts and Architecture

Software Architecture

Message Processing Cycle
Submitting a Serena XML Request
XML Parsing and Data Mapping
Generating the Serena XML Reply

ChangeMan ZMF Interface Comparison

XML Syntax Basics

XML Syntax Standards
XML Tag Names
XML Data Elements
XML Tag Attributes
Comments
Character Entities
XML Documents as Complex Data Elements
Well-Formed Documents
XML Document Declarations
Identifying XML Documents
<?XML?> Declaration Syntax
Serena XML Message Documents
Serena XML Syntax Example
Logical Document Structure
High-Level Tags in Serena XML
<service> Tag: The Root Data Element
<scope> Tag

CONTENTS

13

13
13
14
14
14
15
15

19

19
21
21
22
22
23

25

26
26
26
27
27
27
28
29
30
30
30
32
32
34
35
35
36

Contents

Chapter 3:

<message> Tag
<header> Tag
<request> Tag
<result> Tag
<response> Tag
Filtering XML Services Messages
<includelnResult> Tag
Service, Scope, and Message Summary
Core XML Services Summary
ERO XML Services Summary

Package Management

Package Message Syntax
Identifying Package Messages
Package Naming Conventions
Special Tag Syntax for Package Management

Package Lifecycle Tasks
Create a Package - PACKAGE SERVICE CREATE
Delete a Package - PACKAGE SERVICE DELETE
Freeze a Package - PACKAGE SERVICE FREEZE
Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT
Check a Package for Promotion Readiness - PACKAGE CHECK PROMOTE
Promote a Package - PACKAGE SERVICE PROMOTE
Lock Promotion Site for Package - PACKAGE PROMOTE LOCK
Demote a Package - PACKAGE SERVICE DEMOTE
Demote a Package with Cleanup - PACKAGE CLEANUP DEMOTE
Approve a Package - PACKAGE SERVICE APPROVE
List Package Installation Schedule - SCHEDULE SERVICE LIST
Hold Package Install Job - SCHEDULE SERVICE HOLD
Release Package Install Job - SCHEDULE SERVICE RELEASE
Back Out a Package - PACKAGE SERVICE BACKOUT
Revert a Package - PACKAGE SERVICE REVERT

Package-Level Component Change Management
Component Change Description List- CMPONENT CHG_DESC LIST
List Staged Components - CMPONENT PKG_COMP LIST
Component Description List- PACKAGE CMP_DESC LIST
List Components With Promotion Overlays - PACKAGE PRM_OVLY LIST
Unfreeze Source/Load Components - PACKAGE SRC_LOD UNFREEZE
Refreeze Source/Load Components - PACKAGE SRC_LOD REFREEZE
Unfreeze Non-Source Components - PACKAGE NON_SRC UNFREEZE
Refreeze Non-Source Components - PACKAGE NON_SRC REFREEZE

36
37
38
38
39
40
40
41
41
47

51

51
51
52
52
53
53
64
65
68
71
71
75
76
77
80
83
86
87
88
91
94
95
98
110
113
119
121
123
124

ChangeMan® ZMF XML Services User’s Guide

List Scratch and Rename Utility Records - CMPONENT PKG_UTIL LIST 125
Unfreeze Scratch/Rename Records - PACKAGE SCR_REN UNFREEZE 130
Refreeze Scratch/Rename Records - PACKAGE SCR_REN REFREEZE 131

Package Validation Tasks 132
List Source-to-Load Dependencies - CMPONENT PKG_LOD LIST 132
Check Component Integrity - PACKAGE CMPONENT INTEGRTY 139
Audit a Package - PACKAGE SERVICE AUDIT 141

Package Information Management Tasks 147
List Package Description - PACKAGE GEN_DESC LIST 148
List General Package Parameters - PACKAGE GEN_PRMS LIST 150
Unfreeze Package Parameters - PACKAGE GEN_PRMS UNFREEZE 161
Refreeze Package Parameters - PACKAGE GEN_PRMS REFREEZE 161
List User-Defined Package Variables - PACKAGE USR_RECS LIST 162
List Package Install Sites - SITE PKG LIST 165
Unfreeze Package Install Sites - PACKAGE SITES UNFREEZE 169
Refreeze Package Install Sites - PACKAGE SITES REFREEZE 170
List Package Installation Dependencies - PACKAGE SCH_RECS LIST 170
List Package Implementation Instructions - PACKAGE IMP_INST LIST 174
List Package Approvers - APPROVER PKG LIST 175
List Affected Applications - PACKAGE AFF_APLS LIST 181
List Participating Packages - PACKAGE PRT_PKGS LIST 183
List Linked Packages - PACKAGE PKG_LINK LIST 185
List Package Library Types - LIBTYPE PKG LIST 189
List Package Promotion History - PACKAGE PRM_HIST LIST 194
Package Promoted Component List - PACKAGE PRM_CMP LIST 200
List Reasons for Backout or Revert - PACKAGE REASONS LIST 205

Chapter 4: Component Management 209

Component Management Message Syntax 209
Identifying Component Messages 209

Component Lifecycle Tasks 210
Check Out a Component - CMPONENT SERVICE CHECKOUT 211
Component Service Checkin - CMPONENT SERVICE CHECKIN 216
Check Designated Build Procedures - CMPONENT APL_DPRC CHECK 221
Find Designated Build Procedure - CMPONENT APL_DPRC FIND 225
List Designated Build Procedures - CMPONENT APL_DPRC LIST 226
List Global Designated Build Procedures - CMPONENT GBL_DPRC LIST 231
Component Service Build - CMPONENT SERVICE BUILD 231
Recompile a Component - CMPONENT SERVICE RECOMP 237
Relink a Component - CMPONENT SERVICE RELINK 242
Browse a Component - CMPONENT SERVICE BROWSE 248

Contents

Chapter 5:

Compare Components - CMPONENT SERVICE COMPARE

Rename a Component - CMPONENT SERVICE RENAME

Scratch a Component - CMPONENT SERVICE SCRATCH

Lock or Unlock a Component - CMPONENT SERVICE LOCK/UNLOCK
List Load Module Subroutines - CMPONENT LOD_SUBR LIST

List Copybook Names in Source - CMPONENT SRC_INCL LIST

Count copybook names used by source (baseline I/A or package records) —
CMPONENT SRC_INCL COUNT

List copybook names used by source (baseline I/A or package records) —
CMPONENT SRC_INCL NOLOCATE

List copybook names used by source (baseline I/A or package records) —
CMPONENT SRC_INCL LOCATE

Component Staging Version Management
List Component Staging Versions - CMPONENT SSV_VER LIST
Retrieve Component Staging Version - CMPONENT SSV_VER RETRIEVE
Component Information Management Tasks
List Component Change Description - CMPONENT CHG_DESC LIST
Find Component Description - CMPONENT APL_CDSC FIND
List Component Description - CMPONENT APL_CDSC LIST
List Global Component Description - CMPONENT GBL_CDSC LIST
List Component Promotion History - CMPONENT PRM_HIST LIST
Component History List - CMPONENT HISTORY LIST
List Short Component History - CMPONENT HISTORY LISTSHRT
List Current Component History - CMPONENT HISTORY LISTCURR
List Concurrent Comp. History - CMPONENT HISTORY LISTCONC
List Baselined Component History - CMPONENT HISTORY LISTBASE
List Comp. Standard Language — CMPONENT HISTORY LISTLANG
List Comp. User Worklist Records - CMPONENT PKG_WRKL LIST
Component Security Tasks
Check Component Security - CMPONENT APL_SECR CHECK
Find Component Authorized Users - CMPONENT APL_SECR FIND
List Component Authorized Users - CMPONENT APL_SECR LIST
List Global Component Authorized Users - CMPONENT GBL_SECR LIST

Search, Summary, and Analysis Tasks

Syntax Conventions for Search, Summary, and Analysis
Semicolon-Delimited Lists
Yes/No Flag Tags
Package Search and Summary Tasks
General Package Search - PACKAGE GENERAL SEARCH
Search for Limbo Packages - PACKAGE LIMBO SEARCH
Search for Packages Pending Approval - PACKAGE APPROVE SEARCH

251
254
256
257
259
263

267

269

272
275
275
276
281
285
285
288
289
290
292
294
302
303
304
305
305
309
312
313
315
317
319

323

323
323
324
325
325
343
344

Chapter 6:

Chapter 7:

ChangeMan® ZMF XML Services User’s Guide

Search for Linked Packages - PACKAGE PKG_LINK SEARCH

Package Summary Statistics - PACKAGE SERVICE SUMMARY
Audit Trail Management

Create Log File Entry - LOG SERVICE CREATE

List Activity Log File Entries - LOG SERVICE LIST
Impact Analysis Functions

IMPACT BUN LIST

IMPACT CMPONENT LIST

IMPACT TABLE LIST

Dataset Management

Dataset Lifecycle Tasks
Allocate a Dataset - DSS SERVICE ALLOCATE
Delete a Dataset - DSS SERVICE DELETE
Delete a Dataset Member - DSS SERVICE MBRDEL
List Dataset Allocation Information - DSS SERVICE INFO
List Dataset Member Directory - DSS SERVICE LIST
List ISPF Dataset Allocation Information - DSS ISPFILE INFO
List Statistics for Baseline Members - DSS SERVICE BASESTAT
Expand Member in SRD Format - DSS SERVICE EXPAND

Hierarchical File System Services

Overview
Hierarchical File System Functions
High-Level Syntax
Related Services
HFS Directory Services
Create a Directory — FILE SERVICE MKDIR
Delete a Directory — FILE SERVICE RMDIR
Rename a Directory — FILE SERVICE RENAME
List All Directory Contents — FILE SERVICE LIST
List Files in a Directory — FILE FILES LIST
List Directories in a Directory — FILE DIRS LIST
HFS File Lifecycle Services
Create a File — FILE SERVICE CREATE
Delete a File — FILE SERVICE DELETE
Rename a File — FILE SERVICE RENAME
Copy a File — FILE SERVICE COPY
Create a Link or Alias to a File — FILE SERVICE LINK
Change File Attributes — FILE SERVICE CHANGE
Check Access to a File — FILE SERVICE ACCESS

344
353
362
362
366
367
368
370
372

379

379
380
382
383
384
387
390
392
394

397

397
397
397
398
398
398
400
400
401
405
408
411
411
412
413
414
415
416
417

Contents

Chapter 8:

Chapter 9:

Chapter 10:

Scan Files for Strings — FILE SERVICE SCAN

File Conversion Services
Import a PDS Member into HFS — FILE SERVICE IMPORT
Export an HFS File to a PDS Library — FILE SERVICE EXPORT

Database Management

IMS Development and Administration
IMS Control Region Package Records - PACKAGE IMS_CRGN LIST
Package IMS ACB List - PACKAGE IMS_ACB LIST
IMS DBD Package Overrides - IMSOVRD PKG_DBD LIST
IMS PSB Package Overrides - IMSOVRD PKG_PSB LIST
IMS DBD Application Overrides - IMSOVRD APL_DBD LIST
IMS PSB Application Overrides - IMSOVRD APL_PSB LIST
IMS DBD Global Overrides - IMSOVRD GBL_DBD LIST
IMS PSB Global Overrides - IMSOVRD GBL_PSB LIST
IMS Control Region Application Defaults - IMSCRGN APL LIST
IMS Control Region Global Defaults - IMSCRGN GBL LIST
DB2 Development and Administration
DB2 Active Libraries for Application - DB2ADMIN APL_ACTV LIST
DB2 Logical Subsystems for Application - DB2ADMIN APL_LOGL LIST
DB2 Global Physical Subsystems - DB2ADMIN GBL_PHYS LIST
DB2 Global Logical Subsystems - DB2ADMIN GBL_LOGL LIST

Online Forms Management

Online Forms Lifecycle Tasks
Unfreeze Online Forms - PACKAGE FORMS UNFREEZE
Refreeze Online Forms - PACKAGE FORMS REFREEZE
Submit a Form for Approval - FORMS PKG SUBMIT
Approve a Form - FORMS PKG APPROVE
Reject a Form - FORMS PKG REJECT
Add Comments to a Form - FORMS PKG COMMENT
Forms Information Management
List Global Online Forms - FORMS GBL LIST
List Package Online Forms - FORMS PKG LIST
List Package Online Form Details - FORMS PKG DETAIL

ChangeMan ZMF Administration Tasks

Change Library Administration
List Baseline Library Datasets - BASELIB SERVICE LIST
List Promotion Library Datasets - PROMLIB LIBRARY LIST
List Promotion Site Configuration Records - PROMLIB SITE LIST

418
420
420
421

423

423
425
431
435
439
442
445
447
449
451
453
454
454
457
461
465

471

471
471
473
474
476
477
478
480
480
483
486

489

489
489
493
497

ChangeMan® ZMF XML Services User’s Guide

List Production Library Datasets - PRODLIB SERVICE LIST 499
Site Administration 501
List Globally Defined Remote Sites - SITE GBL LIST 501
List Remote Sites for Application - SITE APPL LIST 504
List Install Calendar for Site - CALENDAR SERVICE LIST 505
Developer Environment Administration 507
List Global Library Types - LIBTYPE GBL LIST 508
List Application Library Types - LIBTYPE APL LIST 515

List Global Language Parsers - LANGUAGE GBL LIST 521
List Application Language Parsers - LANGUAGE APL LIST 523
List Global Build Procedures - PROCS GBL LIST 524
List Application Build Procedures - PROCS APL LIST 526
List Global Parameters - PARMS GBL LIST 527
Parameters Application List - PARMS APL LIST 541
List Global Reason Codes - REASONS SERVICE LIST 550
Approver and Notification Administration 551
List Application Approvers - APPROVER APL LIST 552
Download Global Notification File - NOTYFILE SERVICE DOWNLOAD 554
Upload Global Notification File - NOTYFILE SERVICE UPLOAD 555
Notify User - USER SERVICE NOTIFY 556
Chapter 11: System Environment Information 563
System Setup Parameter List - SYSTEM SERVICE LIST 563
SERNET Environment Parameter List - SYSTEM ENVIRON LIST 567
SERNET Security Group List - SYSTEM SECGROUP LIST 570

ChangeMan ZMF Environment Parameters - ENVIRON SERVICE LIST 571
ChangeMan ZMF STC DDNAME LIBRARIES - DSS SERVICE STCLIST 576

Appendix A: XMLSERV - Interactive XML Prototyping Tool 579
XMLSERYV Functional Overview 580
Main Screen Menu Options 581
Main Screen Primary Commands 581
XML Input and Output Documents 584
Usage Notes 585
Sample XMLSERYV Session 585
Step 1: Start XMLSERV 585
Step 2: Select an XML Service 586
Step 3: Edit the XML Input Document 587
Step 4: Execute the Edited XML Request 589
Step 5: Browse the XML Output Document 589
Step 6: Return to the XML Input Document and Exit 590

Contents

10

Appendix B:

Appendix C:

Appendix D:

Appendix E:

SERXMLBC - Executing Native XML Service Calls

Input Requirements

Output Requirements

JCL Requirements

Return Codes and ABENDs

SERXMLAC - Calling XML Services From Assembler

SERXMLAC Parameter List

Return Codes and Reason Codes

Sample Call to APPROVER PKG LIST
Setting SERXMLAC Parameter List Values
Building the XML Services Request Buffer
Calling SERXMLAC
Processing the Reply Buffer

SERXMLCC - Calling XML Services from COBOL

COBOL-to-XML Copybooks
Copybook Member Names

COBOL Variable Names
Control Variables
Content Variables
Data Types, Values, and Constraints

Input/Output Buffers

COBOL Batch Subroutine Client SERXMLCC
Compiling Programs That Call SERXMLCC
Running Programs That Call SERXMLCC
Return Codes

Sample COBOL Program CMNOPSCH
Compile, Link, and Execution JCL for CMNOPSCH
Display from Sample Program CMNOPSCH

SERXMLRC - Calling XML Services From REXX

SAMPLE JCL TO INVOKE XML REXX EXEC

SAMPLE REXX EXEC CMNO010 PROLOGUE

SAMPLE REXX EXEC CMNO10 MAINLINE

SAMPLE REXX EXEC CMNO010 XML SETUP and CALL
SAMPLE REXX EXEC CMNO10 XML PRINT OUTPUT
SAMPLE REXX EXEC CMNO010 XML DIAGNOSE ERROR
SAMPLE REXX EXEC CMNO10 XML DISCONNECT CODE
Calling SERXMLRC From Panel Exits

593

593
593
594
594

597

597
598
598
598
599
600
601

605

605
605
606
606
606
607
608
609
609
609
610
610
611
612

613

613
614
615
616
617
617
618
619

ChangeMan® ZMF XML Services User’s Guide

Appendix F: Problem Analysis and Troubleshooting Tools 621
Warn - XML Tag Name Warning 621
Warn Tag Name Error Examples 621
Enabling XML Tag Name Error Warning 624
Hierarchy of Warn Facility Controls 625
TEST - XML Batch Client Trace 625
TRACE and NETTRACE in the SERNET Started Task 626
Preferred Connection Method 626
Troubleshooting Tips 626
rc=08, reason code = 8130 error 626
Troubleshooting Variable Length Name Issues 627
Index 629

11

Contents

12

About This Book

The XML Services User’'s Guide documents the most commonly used features of the

XML Services application programming interface (API) to ChangeMan® ZMF. Tutorials, code
examples, use cases, and tips and techniques for applications supplement detailed data
structure tables covering 162 functions available for general customer use.

Services used with the Enterprise Release Option (ERO) are not described in this manual but
are listed for reference in ERO XML Services Summary in Chapter 2, “XML Syntax Basics”.
Refer to the ChangeMan ZMF ERO XML Services User’s Guide for information on using
these services.

After reading this manual, you should be able to do the following:

* Understand the software architecture that underlies ChangeMan ZMF XML Services.
* Create a well-formed XML document that complies with Serena XML syntax.

» Use the Serena XML markup language to build reusable XML documents that invoke
functions and retrieve data from ChangeMan ZMF.

» Use the XML batch execution client to issue Serena XML service requests to
ChangeMan ZMF and receive Serena XML replies.

+ Experiment with the XMLSERYV interactive prototyping tool to learn Serena XML
syntax, generate prototype request messages, and browse Serena XML replies.

Software Versions

This manual discusses Serena Software’s XML Services as implemented in
ChangeMan ZMF version 8.1 (GA) and ChangeMan ZDD 8.1 (GA) and later.

Audience

This manual targets experienced ChangeMan ZMF programmers, multi-platform systems
integrators, and ChangeMan ZMF administrators.

You should be familiar with your mainframe operating system and security system, and you
should understand the operation and administration of ChangeMan ZMF. Some familiarity
with basic XML syntax and schemas is helpful. Familiarity with PCs is assumed.

About This Book

14

Scope

The XML Services features described in this manual are limited to services and functions
available for general customer use. These are sometimes called the “Green” services.
“Green” functions address package and component lifecycle management, complex
searches and queries, data set management functions, change library management
functions, and detailed information retrieval from the ChangeMan ZMF database.

Additional services and functions exist to support advanced systems integration needs. The
latter features are known as the “Yellow” services because they pose some risk of database
corruption and should be used with caution. These are documented in quick-reference form
for customers who attend advanced training in XML Services. This information is available
from Serena Customer Support.

Related Topics

You need not become an XML expert to use XML Services. To master its advanced
capabilities, however, sound knowledge of XML standards is advised. The authoritative
source for this information is the World Wide Web Consortium (W3C). You can find the latest
XML specifications on the Web at http.//www.w3c.org.

The eXtensible Markup Language (XML) standard consists of many components in various
stages of development, change, and ratification. Of these, you should become familiar with
the core XML specifications that cover XML syntax and schemas. If you want to manipulate
and reformat the XML output from XML Services (e.g., for custom reports), you should also
study the XML stylesheet (XSL) specifications.

Related Documents

Title Description
ChangeMan® ZMF ERO XML Documents the most commonly used ERO features
Services User’s Guide of the XML Services application programming

interface to ChangeMan ZMF.

ChangeMan® ZMF XML Reference ~ HTML cross-reference tables for “green” and

Tables “yellow” service/scope/message combinations
supported by XML Services, including ERO, and the
XML tags for each. If you have taken Serena’s
advanced training course in XML Services, you can
contact Customer Support for access to this guide.

ChangeMan® ZMF Installation Guide Step-by-step instructions for the initial installation of
ChangeMan ZMF. Includes installation instructions

for XML Services working data areas.

http://www.w3c.org
http://www.w3c.org
http://www.w3c.org

ChangeMan® ZMF XML Services User’s Guide

Title Description

ChangeMan® ZMF Administrator’s Includes information on customizing exits to call
Guide XML Services.

ChangeMan® ZMF Web Services Documents the Web Services application
Getting Started Guide programming interface to ChangeMan ZMF

Typographical Conventions

The following textual conventions are used throughout this document to highlight special

information:
This convention . .. Represents . ..
Monospace Serena XML code or keyword.
Bold Monospace Serena XML required tag.
< > Delimiters for XML tag name (e.g., <package>).
Tags omitted from example for clarity.
Italic URL, file name, function name, or book title.
Blue Italic Clickable cross-reference or active hyperlink in document.

MANUAL ORGANIZATION

This
chapter ... | Contains this information . . .

1 Introduction and architecture overview. Introduction to features,
functions, and benefits of XML Services. Layered software architecture,
dynamic client/server messaging, XML interface language, and modular
service objects. Choice of XML, COBOL copybook, or REXX batch
execution clients.

2 Serena XML basics. XML language extensions and XML schemas. Syntax
and structure of a well-formed XML document. High-level structure and
syntax of Serena XML message documents. Table of Serena XML service,
scope, and message names with corresponding COBOL copybooks.

15

About This Book

This

chapter. ..

Contains this information . . .

3

Package management. Serena XML syntax, data structures and values,
code examples, and usage tips for the following package-related tasks:

» Package lifecycle functions (e.g., create, delete, freeze, submit, approve,
promote, demote, back out, revert).
» Package-level component change (e.g., unfreeze, refreeze, list).

+ Package control and metadata information management (e.g., list).

Component management. Serena XML syntax, data structures and values,
code examples, and usage tips for the following component tasks:

+ Component lifecycle functions (e.g., checkout, checkin, browse,
compare, build, recompile, relink, scratch, rename, lock, unlock).

» Component staging versions (e.qg., list, retrieve).

» Component control and metadata information management (e.g., list).

+ Component history information (e.g., selective search and list).

Search, summary, and analysis tasks. Information retrieval and statistical
analysis that crosses package, component, and/or application boundaries.
Includes the following:

* Multi-package search (e.g., general and limbo search).

* Multi-package summary statistics.

+ Component impact analysis functions.

* Change log creation and listing.

Dataset management. XML Services support for managing sequential and
partitioned datasets on the mainframe. Includes PDS/PDSE lifecycle
functions (e.g., create and delete data set, delete data set member, and list
data set information).

Hierarchical file system services. XML Services support for managing
HFS files and directories on the mainframe. Includes:

» HFS directory services (e.qg., create, delete, rename, or list the contents
of a directory).

» HFSfile lifecycle services (e.g. create, delete, rename, or copy an HFS
file, change certain file attributes, or test for file existence and verify user
access permissions).

* File conversion services (e.g., import a z/OS PDS (Partitioned Data Set)
member as an HFS file or export an HFS file as a PDS member).

16

ChangeMan® ZMF XML Services User’s Guide

This
chapter ... | Contains this information ...

8 Database management for IMS and DB2. Serena XML syntax and data
structures for retrieval of change control metadata about the following:

» IMS package-level, application-level, and global settings and data bind-
ing information (e.g. control region, ACB build statement, DBD and PSB
control statement list.)

» DB2 application-level and global settings and data binding information
(e.g., list records for active DB2 applications, logical files, and physical
files).

9 Online forms management. Serena XML syntax and data structures for
retrieving information and submitting and approving custom online forms
associated with a package.

10 ChangeMan ZMF administration tasks. Serena XML syntax and data
structures for retrieving global and application-level information about
change libraries, sites, languages, library types, and build procedures. XML
access to site calendars and package installer scheduling facilities, approver
maintenance, reason code administration, and notifications are also
discussed.

11 System administration tasks. Serena XML syntax and data structures for
retrieving SERNET and ChangeMan ZMF setup information, environment
parameters, and started task library concatenation.

Appendix A | XMLSERYV - Interactive TSO/ISPF prototyping tool for XML Services.
Appendix B | SERXMLBC — Serena XML native-XML batch execution client.
Appendix C | SERXMLAC — Serena XML ASSEMBLER execution client.
Appendix D | SERXMLCC — Serena XML COBOL execution client.

Appendix E | SERXMLRC — Serena XML REXX execution client.

Appendix F | Problem analysis and troubleshooting tools. How to resolve errors when
using XML Services.

Change bars in the left margin identify changes in this publication since version 8.1.

17

About This Book

18

XML SERVICES CONCEPTS AND
ARCHITECTURE

XML Services offers ChangeMan® ZMF customers and system integrators an enhanced
application programming interface (API) based on industry-standard XML (eXtensible
Markup Language). XML Services simplifies customization, data interchange, and cross-
product interoperability for ChangeMan ZMF and other products. An integrated feature of the
base ChangeMan ZMF product, XML Services supports all optional product features,
including the DB2 Option, IMS Option, ERO Option, M+R Option, and Load Balancing
Option. XML Services is the preferred API for customers and system integrators who work
with ChangeMan ZMF.

Functionally, XML Services:

» Offers a unified XML programming interface to ChangeMan ZMF functions.

* Provides open access to ChangeMan ZMF package master, component master,
Impact/Analysis repository, and activity log data.

* Interoperates seamlessly with Serena products such as ChangeMan® ZDD and
StarTool® DA.

+ Enables integration with third-party development tools, databases, and reporting.

* Includes “software developer kit” (SDK) environments to simplify developer access to
the XML Services API using native-XML, ASSEMBLER, COBOL, or REXX.

SOFTWARE ARCHITECTURE

XML Services comprises much more than syntax. It is fully integrated with ChangeMan ZMF
and builds on the following architectural keystones:

» A layered software architecture provides application independence from technology
changes in ChangeMan ZMF internals. The low-level “Extended Services” that perform
basic ChangeMan ZMF functions are isolated from higher-level interfaces.

* Modular service objects within the “Extended Services” layer provide a single point of
access to ChangeMan ZMF functions. The set of low-level service objects is both
comprehensive and extensible.

» Dynamic client/server messaging uses a shared object-request broker for all
ChangeMan ZMF communications. This approach supports asynchronous, stateless,
message-based transactions between XML client and server — ideal for network
environments and Web-enabled services.

19

Chapter 1: XML Services Concepts and Architecture

20

A tag-based XML markup language built on industry-standard XML is easily recognized
and processed by third-party software. Tag-based markup frees data interchange from
bit-offset dependencies and wireline sequence dependencies. It is also inherently
extensible, so that custom programs that use the XML Services interface need not be
changed when new features or functions are added to ChangeMan ZMF.

Developer-friendly SDK clients support COBOL-to-XML, ASSEMBLER-to-XML, and
REXX-to-XML AP calls as well as interactive XML prototyping.

An overview of the layered XML Services architecture appears in Exhibit 1-1.

Exhibit 1-1. XML Services Architecture

NETWORK

(o7

s l/ R
MAINFRAME TCP/IP
(1\ 'd N\
TCP/IP Y
SERCLIEN < > SERNET
Messaging Client < > Messaging Server
XMS
Y
TSO/BATCH SERENA XML SERVER
SERXMLBC XML Message Document Processing
XML Batch Execution
Client i€— XML Schemas
[XmLIN | [xmLoUT | B« \apping Flles
HANDLERS -
Parsing & Document
Data Mapping % Content Model
XML i« Internal DSECTs
y
EXTENDED
iERIi':aEt-il;Jn Server SERVICES
PP Service Objects
CHANGEMAN ZMF
USER ADDRESS SPACE SERVER ADDRESS SPACE
g S . 4
-

ChangeMan® ZMF XML Services User's Guide

MESSAGE PROCESSING CYCLE

The architectural building blocks of XML Services come together in the Serena XML
message processing cycle. The message processing cycle flows through the following steps:

» Serena XML request message issued from client to server

XML message parsed

+ XML data mapped to internal ChangeMan ZMF data formats

* Requested task performed by low-level service object

» Service object success/failure codes and output data mapped to XML data elements

» Serena XML reply message sent by server to client

Every Serena XML request message that reaches the server triggers a Serena XML reply. At
minimum, the reply includes a result code that informs the requesting program whether the
requested task succeeded, generated a warning message, or failed. Successful requests
may trigger several result messages as well — each result representing, for example, a
record in a data set or a line in a report. All results generated by a single XML request
document are returned in a single XML reply document.

Submitting a Serena XML Request

Serena XML service request messages are issued from the client to the server via a software
developer’s “kit” (SDK) or environment optimized for a particular programming language.
Batch XML is submitted via the SERXMLBC batch client. Interactive XML can be prototyped
in XMLSERYV with prompts for required tags and other ease-of-use features, then submitted
for execution through SERXMLBC.

The SERXMLCC COBOL-to-XML batch execution client, together with a collection of COBOL
copybooks, facilitates XML Services API requests using native COBOL data formats and
program calls. Each copybook wraps the proper Serena XML syntax around the contents of
predefined COBOL variables populated by your custom COBOL program. Your COBOL
program then calls SERXMLCC to generate a true Serena XML request document and place
it in the normal XML message processing stream.

The SERXMLRC REXX-to-XML batch execution client similarly facilitates XML Services API
requests using native REXX stem data formats and program calls. Your REXX program
populates an approximate REXX stem structure, then calls SERXMLRC to generate a
Serena XML request document and place it in the normal XML message processing stream.

The SERXMLAC ASSEMBLER-to-XML batch execution client facilitates XML Services API
requests using native ASSEMBLER data formats and program calls.
Service, Scope, and Message Syntax

Every Serena XML service request uses a high-level XML syntax that identifies the

ChangeMan ZMF service, scope, and message names for the task requested. These values,
in combination, uniquely identify the modular service object on the server that must process
the request. They also identify the function to be performed and the category of information to

21

Chapter 1: XML Services Concepts and Architecture

22

perform it against. Their values also must be specified with CAPITAL letters. The batch
execution client that submits your request first preprocesses it to ensure that the combination
of service, scope, and message names is valid.

Message Routing

If the XML Services service, scope, and message names are valid, the execution client calls
the appropriate client messaging program — either SERCLIEN on the mainframe or
SERNET Connect on distributed platforms — to initiate a connection to ChangeMan ZMF.
The preferred communications protocol for this connection is TCP/IP, but cross-memory
services (XMS) is also supported if the client and server both reside on the same mainframe
LPAR. The messaging client performs any necessary data compression and packages the
XML message with appropriate headers for network addressing, handshaking, and
mainframe logon. It then requests a communications session to ChangeMan ZMF via the
SERNET messaging server.

The SERNET messaging server resides on the host in the ChangeMan ZMF server address
space, where it listens on one or more communication ports for incoming messages. When a
message arrives, SERNET completes any network handshaking needed, processes the
communications headers, and establishes a conversation. SERNET also decompresses
messages and performs any needed data format conversions (e.g. from ASCII to EBCDIC).

If the inbound message contains Serena XML, the SERNET messaging server calls the XML
Services input handler to transform that data into internally readable form. The XML input
handler then returns the transformed data to the SERNET messaging server, which routes it
to the appropriate low-level service object for action.

XML Parsing and Data Mapping

At the core of XML Services are its XML parsing and bidirectional data mapping processes.
These interpret Serena XML message streams and map the identified XML data structures of
a request to the internal assembler DSECT formats used by the low-level service objects in
ChangeMan ZMF. In the reverse direction, the low-level service objects return results that are
mapped from their internal assembler DSECT formats to Serena XML data elements, then
marshalled into Serena XML reply messages. Serena uses proprietary parsing to achieve
faster XML processing.

Generating the Serena XML Reply

After the XML input handler has parsed the Serena XML request message and mapped its
data to an appropriate DSECT structure, SERNET queues that DSECT request block for
input to the requested low-level service object. The service object receives the request block,
performs the requested task, and generates (at minimum) a numeric return code. It may also
generate an output message, a report listing, or a set of search results. This output data is
stored in one or more output DSECTs populated by the low-level service object. The output is
then returned to SERNET for routing to the XML output handler.

The XML output handler marshals a Serena XML reply document from one or more of these
output DSECTs. Guided by the permanent object mapping table, the XML output handler

ChangeMan® ZMF XML Services User's Guide

maps each field in the DSECT to its corresponding XML tag and creates a document content
model for the reply document in a temporary hashed tag pool. The output handler then
transforms the document content model into well-formed XML and places the resulting
document in a user response area known to the SERNET messaging server.

Control then returns to SERNET, which compresses the XML reply message, packages it
with appropriate communications headers, and routes it to the requesting client. Note that, for
distributed clients, the SERNET messaging server echoes the original XML request in the
XML reply document. For ChangeMan ZMF clients, however, the original XML request is not
echoed.

CHANGEMAN ZMF INTERFACE COMPARISON

ChangeMan ZMF supports following interfaces:

» Interactive ISPF end-user and administrator panels

* Interactive and batch-mode programming clients (SDKs) for XML Services —
including SERXMLAC, SERXMLBC, SERXMLCC, SERXMLRC, and XMLSERV

Of these, the interactive ISPF interface is functionally comprehensive. User tasks are
presented at a high level; many low-level software functions might take place behind the
scenes to accomplish a “simple” high-level ISPF request. The ISPF interface also builds in
robust data validation features on every panel. No other interface provides this level of data
validation support.

No one-to-one mapping exists between XML Services interface functions and ISPF interface
functions, although similarities are apparent. The XML Services interface targets a lower level
of internal function than does ISPF, and is more directly shaped by underlying database

implementations and service object technology. Consequently, ISPF-based intuitions may not
always apply to XML Services. In addition, XML Services includes no built-in data validation.

3 Caution

Data validation is the responsibility of XML Services customers. XML Services
provides no built-in data validation. All ISPF tables that are available to the ISPF
interface to ChangeMan ZMF are not necessarily available to the corresponding
functions that are performed with the Serena XML Services. Furthermore, the target
XML Services do not need these tables to perform their functions correctly. Using the
XMLWARN facility can provide further information concerning data validation, as
documented in “Warn - XML Tag Name Warning” on page 621.

23

Chapter 1: XML Services Concepts and Architecture

ChangeMan ZMF interface differences are summarized in Exhibit 1-1.

Exhibit 1-1. ChangeMan ZMF Interface Comparison

Reusable Functional Data
Interface Interactive | Batch Jobs Coverage Validation
ISPF Yes No Complete, Yes

high-level

XML Services batch clients (SERXMLAC, No Yes XML, COBOL, No
SERXMLBC, SERXMLCC, SERXMLRC) REXX, Assembler
XML Services interactive client Yes Yes XML No
(XMLSERV)

24

XML SYNTAX BASICS

Serena XML is SERENA Software’s markup language for Enterprise Change Management
(ECM). It is standard XML extended to support the customization, data interchange, and
interoperability needs of ChangeMan ZMF customers as they implement change
management solutions. Serena XML is the most visible component of XML Services.

The Serena XML markup vocabulary consists of more than a thousand special-purpose XML
tags used to delimit values in a text file. These tags are defined according to XML'’s rules for
adding new tags to itself. The particular mechanism for defining these special-purpose tags is
called an XML schema. The Serena XML schemas define not only the tag vocabulary of
Serena XML, but also the structure of each data element named by these tags and the syntax
used when populating these data elements in an XML document.

Is Serena XML “really” XML, then? The answer is, emphatically, yes. XML stands for
eXtensible Markup Language. Its reason for being is to provide a standard method for
creating special-purpose markup languages — extensions, that is, to the base XML tag set.
There are two points to remember about XML extensions:

+ Extensions are not replacements; they are additions. XML imposes a discipline on its
language extensions that makes them systematically extensible over time. Within broad
limits, this discipline prevents the foreclosure of alternatives; future options remain open.
Built-in XML extensibility means that Serena XML can grow and change without forcing
obsolescence on earlier versions of the language.

» Extensions to XML are syntactically consistent with XML. All special-purpose
extensions to XML follow the same basic syntactic and structural rules. Familiarity with
basic XML syntax makes all XML-based markup languages easier to learn and use.

Some knowledge of Serena XML syntax is needed by all users of XML Services. For
example, COBOL programmers working with the COBOL-to-XML copybook interface need to
know about individual copybook functions and predefined COBOL variable names, data
types, and value information — all of which derive from Serena XML. Programmers who work
directly with Serena XML need not only data type and value information, but also detailed
information about XML language syntax and data structures.

This chapter begins with a discussion of general XML syntax and standards as defined by the
World Wide Web Consortium (W3C). It then addresses the basic features of Serena XML.
The features discussed are those that apply to all message documents created in Serena
XML and to all ChangeMan ZMF user tasks performed via Serena XML. The chapter
concludes with a summary of all valid combinations of <service>, <scope>, and

25

Chapter 2: XML Syntax Basics

<message> name attributes in Serena XML available to customers for general use. This
summary includes the names of the corresponding COBOL-to-XML copybooks.

XML SYNTAX STANDARDS

The body of standards defining XML is actually quite large, but only two core specifications
directly concern users of Serena XML. These are the XML Version 1.0 syntax specification
and the XML Schema specification. These and other XML specifications are established by
the World Wide Web Consortium (W3C) and are published online at http.//www.w3c.org.

To use the Serena XML programming interface to XML Services, you first need a basic
familiarity with this core XML syntax.

XML Tag Names

Programmers familiar with Web markup will note that XML syntax resembles HTML syntax.
Like HTML, XML makes use of tags (of the form <tag>) and attributes (of the form
name="value"). Like HTML tags, XML tags delimit units of content and identify that content
by tag name. Generally, XML statements look something like this:

<tag attribute="value">data value or structured content</tag>

In standard-compliant XML, tag and attribute names are case-sensitive — that is, <tag> is
not the same as <Tag>. Tag and attribute names may include alphanumeric characters,
hyphens, underscores, and periods. Other punctuation marks are generally prohibited, since
they may have special meanings in XML.

XML Data Elements

Functionally, XML tags mark data elements in text. Data elements are of two types:

» Simple data elements contain basic data types such as integers, dotted decimal
numbers, dates, times, fixed-length or variable-length character strings, or the like.
Simple data elements cannot be decomposed into subordinate XML data elements; they
are, in that sense, “atomic” units of data. Such a tag might look something like this:

<package>ACCT000025</package>

* Complex data elements contain a data structure composed of one or more subordinate
XML data elements, each delimited by its own pair of subtags within the main tag pair.
The subordinate elements may themselves be either simple or complex. Complex tags
may be built up from successively simpler tags to form a hierarchical tree structure. A
complex tag structure with just one level of subtags might look something like this:

<response>
<statusMessage>CMN8700I - LIST Package service completed</status
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>

26

http://www.w3c.org

ChangeMan® ZMF XML Services User's Guide

The contents of an actual data element must conform to whatever data validation restrictions
are imposed by the tag definition. For simple data elements, such restrictions would include
data type, data pattern, allowable value range, and/or membership in a predefined value list.
For complex data elements, the data stfructure must also conform to the tag definition.
Restrictions at this level include allowable subtags, subtag sequencing, mutually exclusive
subtag choices, and mandatory subtag inclusion. Restrictions on the minimum and maximum
number of consecutive tag repetitions, if any, must also be met.

XML Tag Attributes

Attributes qualify the manner in which a tag is used or processed. One tag may have multiple
attributes, so each attribute must be explicitly named. The value assigned to an attribute
must appear in double quotes and must be a simple data type — such as a date, a character
string, or an integer.

Attributes are not (or should not be) used to hold application data. That's what data elements
—i.e., tags and subtags — are for! Attributes are used to:

« Identify the subtype of a tag that is complex enough to have alternative formats,
substructures, or validation requirements.

* Identify a particular tag instance to distinguish it uniquely from other instances of use.

+ Set a flag for the target application to use when choosing among several data
interpretations or processing options.

In the case of Serena XML, attributes are used primarily to identify which of many alternative
data structures is intended when a particular tag is used. Depending on the value of the
attribute, the allowed subtag content and sequence may vary.

Comments

In addition to tags and attributes, standard-compliant XML allows comments. XML
comments, like those in HTML, begin with <! -- and end with -->. Multi-line comments are
permitted. The end-of-comment delimiter must be preceded by a blank or be the first item on
a new line. Double hyphens cannot appear anywhere within the comment body.

An XML comment might look something like this:

<!-- This is a comment, line 1.
This is a comment, line 2. -->
Character Entities

XML relies on reserved characters (e.g., angle brackets and double quotes) to delimit
language-specific constructs (e.g., tags and attribute values). If you include one of XML’s
reserved characters in your tag data or in attribute values, the XML parser will attempt to treat
it as a reserved character — e.g., as the opening angle bracket for a tag name — with
unpredictable results. To get around this difficulty, XML provides a mechanism for escaping
these characters from the special treatment they normally receive, so that they can be
included in ordinary data. This is achieved using character entity codes.

27

Chapter 2: XML Syntax Basics

28

Character entity codes begin with an ampersand (&) and end with a semicolon (;). Between
these delimiters is a character entity name that identifies the character represented by the
entity code. Numeric character entity codes are also allowed in generic XML; however, the
XML Services parser does not support numeric character entities at this time.

Five character entities have predefined names in XML. They are listed in Exhibit 2-1.

Exhibit 2-1. XML Character Entities

Entity Code Character Represented

< Less-than symbol or opening angle bracket (<)
> Greater-than symbol or closing angle bracket (>)
& Ampersand (&)

" Straight, double quotation mark (")

' Apostrophe or straight, single quotation mark (‘)

For example, you might use ampersands in the names of program modules that you mention
in your package implementation instructions. Simply typing an ampersand, in most cases,
would generate a parser error. To insert the ampersand without generating an error, use the
& ; character entity where you would normally type an ampersand. For example:

<packageImplInst>Requires prior execution of USR&001.</
packageImplInst>

XML parsers vary in their sensitivity to the occurrence of reserved characters in data. You can
usually get away with using a regular apostrophe (*) instead of the &apos ; character entity
in data strings, for example. But you should always escape any ampersands or angle
brackets in your data strings, and escape all special characters in attribute values.

i

iy
S

Tip

Use character entities instead of special characters in data or attribute values.

XML Documents as Complex Data Elements

XML documents as a whole are themselves defined as complex data elements. The start and
end of the document is identified by a root tag. Nested within the root tag are the subtags that
make up the content of an instance document — that is, an actual XML document containing
data. There is one and only one root element in an XML document, and the overall structure
of the document is always a hierarchical tree. Data structures that loop back upon
themselves are forbidden anywhere in an XML document.

The structure of an XML document and its component data elements is defined externally in
one of two types of files: a Document Type Definition (DTD) or an XML schema. XML
Services uses the schema approach, because schemas support more sophisticated and
rigorous data typing than DTDs. XML documents can be validated against the relevant
schema by an XML parser to ensure data validity.

ChangeMan® ZMF XML Services User's Guide

Well-Formed Documents

The elements of XML syntax must be combined in a way that conforms to XML rules for a
well-formed document. If XML Services receives XML input that is not well-formed, it will
return an error and make no attempt to process the service request.

XML rules for a well-formed document mirror those in the latest version of HTML. Unlike past
practice with HTML, however, the rules for XML are strictly enforced. In particular:

Only one root tag is allowed in a document. A well-formed XML document must map
to an n-way tree data structure. Such a tree has exactly one root node. The root node
may have multiple branches to lower-level nodes, each of which may also branch
similarly to any depth. Nodes in the tree structure correspond to tags in the XML syntax.

Every opening tag must be matched by a closing tag. Closing tags have the same tag
name as the opening tag, preceded by a forward slash. For example, the opening tag
<tag> must be paired with the closing tag </ tag>.

Standalone tags must be self-closing. Standalone tags are defined to mark points in a
document rather than contain data; they are explicitly declared to be “empty”in the XML
schema. Since it contains no data, the standalone opening tag is also the closing tag. As
such, it includes a final slash just before the ending angle bracket. For example:

<tagname />

Attribute values must be enclosed in double quotes. The quotes are never optional.
For example:

<tag attribute="value”>

Nested tags must be opened and closed in the proper order. The rules for pairing the
opening and closing tags in a nested data structure are the same as those for pairing the
opening and closing parentheses in a mathematical expression. The first tag opened

must be the last tag closed, the next tag opened must be the next-to-last tag closed, and
the last tag opened must be the first tag closed. Visually:

Vo — 1

<firstTag><nextTag><lastTag> . . . </lastTag></nextTag></firstTag>

XML comments are comments — and nothing else. The frequent HTML practice of
embedding non-markup processing instructions in comments is not allowed in XML.
Instead, non-XML processing instructions and other non-XML declarations should
precede the root tag in the document file.

Strict enforcement of these syntax rules prevents ambiguity when interpreting XML
documents. This is vital in XML, because general-purpose XML parsers, unlike their HTML
counterparts, can’t rely on the names of tags to help resolve ambiguity.

29

Chapter 2: XML Syntax Basics

30

For example, if you see the tag ‘<p>’ in an HTML file, you can assume it marks a
paragraph. This works because HTML predefines what each tag and attribute name means
in advance and all HTML parsers build in at least some of that knowledge.

However, in XML, you cannot assume anything about the tag ‘<p>’. XML leaves the
interpretation of document markup and document content completely to the application that
reads it. Tag meaning is defined externally to the document in either a DTD specification or
an XML schema specification.

XML DOCUMENT DECLARATIONS

An XML document must identify itself as such to the SERNET messaging server in order to
be routed properly to and from XML Services. In addition, once an XML document reaches
an XML parser or similar XML processor on either the server or the client, the document must
declare the type of XML document it is. This allows the XML parser to interpret the document
data structures properly.

Identifying XML Documents

Standard-compliant XML relies on a combination of file naming conventions and declarations
in the XML instance document itself to flag XML documents for processing. Conventions for
doing this differ somewhat on distributed systems and mainframes.

Distributed systems usually identify XML documents by the Web-style .xml file name
extension, which is appended to a base file name of up to 8 characters (or more on modern
systems). The file name extension identifies the document type immediately for Web
browsers and other distributed applications that work with XML. This eliminates the need for
these applications to open each document they receive and inspect the contents to
determine whether it contains XML. If you access XML Services from a distributed client, you
may want to append the .xml file extension to any file names when saving reusable Serena
XML documents in your local development environment. This facilitates the integration of
ChangeMan ZMF with distributed applications.

Mainframes do not support the same file naming conventions used on most distributed
systems. The SERNET messaging server therefore cannot rely on file naming conventions to
identify XML documents. Instead, SERNET inspects the first line of an incoming message to
determine whether or not it contains XML. For this reason, XML Services requires that XML
documents always include an <?xm17?> declaration to identify themselves. This requirement
applies regardless of the type of system on which the document originates.

Mainframe users may find it useful to define a library type called “XML” for storing reusable
XML documents. However, this is not a requirement of XML Services.

<?XML?> Declaration Syntax

An <?xm1?> declaration is required on the first line of an XML document. Because it is not
properly an XML statement, it precedes the XML root tag of your document. It also precedes
any other non-XML declarations or processing instructions that appear before the root tag.

ChangeMan® ZMF XML Services User's Guide

The <?xm17?> declaration looks something like this:
<?xml version="1.0" encoding="UTF-8"?>

The version attribute is required. The encoding attribute is optional (the default is UTF-8).

<?XML?> Version Attribute

The version attribute in the <?xm1? > declaration refers to the particular W3C syntax
standard followed in your XML document. XML Services recognizes XML Version 1.0,
Second Edition, which was published by the W3C in October 2000. This is the latest version
of XML. Attempts to use other versions will fail. Consequently, your <?xm1?> declaration will
always have the following versiion attribute:

<?xml version="1.0"7?>

<?XML?> Encoding Attribute

The encoding attribute in the <?xm17?> declaration identifies the character encoding
standard used to represent text in your XML document. To ensure both cross-platform and
international language compatibility, the W3C specification for XML states that all standard-
compliant XML parsers support Unicode. Support for additional character sets is optional.

Unicode is a superset of the 7-bit ASCII character code, with international language and
special symbol extensions. The most widely supported variant of Unicode is UTF-8, a
variable-length encoding that uses one to four 8-bit bytes to represent characters and
symbols. It yields compact files sizes for Latin-based alphabetic text, yet expands to support
non-Latin alphabets, ideographic characters, and a wide variety of special symbols on
demand. The first 128 code points in UTF-8 — i.e., character codes 0 to 127 — correspond to
the same character codes in 7-bit ASCII.

XML Services supports 7-bit ASCII and the full U.S. EBCDIC character set, as well as the
subset of UTF-8 that happens to match 7-bit ASCII. Any of the following encoding attributes
are therefore valid in the <?xm1?> declaration for XML Services:

<?xml version="1.0” encoding="UTF-8"2>
<?xml version="1.0” encoding="US-ASCII”?>>
<?xml version="1.0” encoding="EBCDIC-US”?>

Note

You may also omit the encoding attribute and it will default to UTF-8.

The values for the encoding attribute have the meanings shown in Exhibit 2-2.

Exhibit 2-2. XML Character Encoding Attributes

Attribute Value Character Encoding Description

UTF-8 Variable-length Unicode representation in one to four 8-bit bytes. Supports international
languages, including non-Latin and ideographic scripts. The default encoding for XML.
XML Services accepts documents with this attribute, but interprets them as 7-bit ASCII at
this time. Codes higher than 127 are ignored.

31

Chapter 2: XML Syntax Basics

32

Exhibit 2-2. XML Character Encoding Attributes

Attribute Value Character Encoding Description

US-ASCII 8-bit ASCII character set. XML Services accepts documents with this attribute, but
interprets them as 7-bit ASCII at this time. Codes higher than 127 are ignored.

EBCDIC-US 1987 standard EBCDIC for U.S. English & IBM 3270 terminals. Fully supported by XML
Services.

Undefined Character Code Handling

The double-byte variant of Unicode is UTF-16. UTF-16 reserves the range of character codes
EOOO — F8FF as the Private Use Area (PUA) range. The PUA range is reserved for private
use by software vendors.

When converting from EBCDIC to UTF-16 or UTF-8, conversion will fail for characters that
are not defined in the EBCDIC code page. To handle characters that fail conversion,
SERNET utilizes PUArange F800 — F8FF. For UTF-16, undefined characters are converted
to F8xx, where xx is the hexadecimal value of the undefined EBCDIC character.

For UTF-8, in binary this corresponds to:
11101111 101000bb 10bbbbbb
where bbbbbbbb is the binary value of the undefined EBCDIC character.

When converting from UTF-16 or UTF-8 back to EBCDIC, SERNET will convert the F8xx
characters back to their original xx form.

SERENA XML MESSAGE DOCUMENTS

Every Serena XML request and reply message is an XML document. From a syntactic point
of view, each document consists of free-format text delimited by nested markup tags. Tags
may be nested to any depth, repeated, or exhibit other forms of structure. The nested tag
syntax of an XML document is logically equivalent to a hierarchical n-way tree structure.

Serena XML Syntax Example

Syntactically, a Serena XML document begins with a document type declaration, then opens
the root <service> tag. The document ends with the closing </service> tag.

The name attribute of the <service> tag determines which <scope> subtags are valid for
nesting within the <service> tag for a particular instance document. Similarly, the name
attribute of the <scope> tag determines which <message> subtags are valid for nesting
within it.

The <message> tag completes the trio of nested tags needed to invoke a low-level service
object in the Extended Services layer of XML Services. The name attribute of the <message>
tag, in the context provided by the superordinate <service> and <scope> tags, determines
which complex data structures are valid within the <message>.

ChangeMan® ZMF XML Services User's Guide

The following Serena XML example illustrates the nested structure of a Serena XML
document. The role of the <service> tag as the root node is clear from the indentation —
although in practice, both indentation and line breaks are optional in XML.

It should also be clear from this example why markup tags in free-format text are so flexible
for data interchange. Adding one more tag to some level in the hierarchy does not change the
meaning of any other tag in the message.

XML Example — PACKAGE SERVICE CREATE:

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name='"SERVICE">
<message name="CREATE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<applName>ACTP</applName>
<createMethod>0</createMethod>
<packageLevel>l</packageLevel>
<packageType>1</packageType>
<reasonCode>000</reasonCode>
<requestorDept>IDD</requestorDept>
<requestorName>USER24</requestorName>
<requestorPhone>555 5555</requestorPhone>
<packageTitle> TEST XML PACKAGE SERVICE CREATE</packageTitle>
<packageDesc>TEST XML PACKAGE SERVICE CREATE</packageDesc>
<packageImplInst>TEST XML PACKAGE SERVICE CREATE</packageImplInst>
<siteInfo>
<siteName>SERT8</siteName>
<installDate>20091231</installDate>
<fromInstallTime>0100</fromInstallTime>
<toInstallTime>0200</toInstallTime>
<contactName>USER24</contactName>
<contactPhone>555 5555</contactPhone>
<alternateContactName>USER24</alternateContactName>
<alternateContactPhone>555 5555</alternateContactPhone>
</siteInfo>
</request>
</message>
</scope>
</service>

33

Chapter 2: XML Syntax Basics

Logical Document Structure

The logical structure of a ChangeMan ZMF XML Services document can be visualized as an
n-way hierarchical tree. This structure is illustrated for the high-level nodes common to all
services in Exhibit 2-3.

Exhibit 2-3. High-Level XML Document Structure

<service> Legend
name = —— Required —» Subtags
Bl simmewd s brodlh e Optional * + + Omitied Subtags
« calendar * language * promlib _< ag> | Tag Name
* cmponent . Iibt)gpeg . Eeasons g o Seque_r_me
* data * log « schedule Attribute Name 0-00 Repetitions
: ggg admin : ngy}gge . S;,Sstlé?n Attribute Value Exclusive Or
* environ * parms * user
\ 4
<scope>
name = | B
« aff_apls « gbl_dbd « pkg_dbd iy i
* apl * gbl_logl * pkg_link i 0-1
* apl_actv * gbl_phys * pkg_lod !
* apl_dbd * gbl_psb * pkg_ofm H <subsys>
* apl_dprc * general * pkg_psb ! !
* apl_logl * gen_desc * pkg_util H T S
« apl_psb egen prms e« pkg_wrkl ; Fo ! <product>]
* apl_secr * history * prm_cmp :] “-------------O--i-
« check * imp_anal * prm_hist : i 21
e chg_desc * imp_inst * prt_pkgs i '.__>. <test>]
* cleanup * ims_acb * sch_recs i IEEEIRRSeCInoIEs 4
e cmponent * ims_crgn * service i 0-1
e cmp_desc « ispfile e scr_ren 2
« dirload * library * src_lod T <request>
« dirnone * limbo * site 1
* dirpds * non_src * SSv_ver i BEa
* environ * pkg * usr_recs '--9! <includelnResult>]
» forms * pkg_comp < xap_anal “““““““““O‘C')
« gbl fe o O-
quest s
Message
\ | *
<message> L »(XOR)
name = [
« allocate « find * reject Reply
* approve * freeze * release Message
* audit * hold * relink
* backout * info erename | (@ ecoccmmcnmoosoos a
* browse * integrty * retrieve <result> | e e e
* build « list erevert | | @ fTmTmmmmmmmmm=ee- '
 check * listconc * scratch 0-
* checkin * listcurr * search y
« checkout « listshrt « stelist <response> |
* comment * lock * submit
* compare * mbrdel * summary
* create * notify * unfreeze > | SR Eodes |
* delete * promote * unlock
* demote * recomp ¢ upload
» download * refreeze _>| e e e R |

—>| <statusMessage> |

34

ChangeMan® ZMF XML Services User's Guide

Diagram conventions for Exhibit 2-3 are as follows. Each node of the tree (shown as a
rectangle) corresponds to a named data element represented in markup by an XML tag. One
or more branches from a node (shown by solid or dashed lines) represent the inclusion of
subsidiary nodes in the higher-level node’s contents. Dashed borders indicate an optional
data element; solid borders indicate that the node is required. Multiple occurrences of a node
are allowed — each occurrence of which includes the node’s subordinate data structure.
Mutually exclusive relationships among nodes is shown by a lozenge-shaped octagon
labeled “XOR,” from which branches extend to the mutually exclusive nodes with their
substructures. Leaf nodes indicate simple data elements containing raw data rather than a
substructure of subordinate data elements. An ellipsis (three consecutive dots) indicates the
omission of subordinate nodes from the diagram for clarity.

Nodes in the structure diagram are annotated according to the following conventions:

» Tag names appear in the blue region of the node.

+ If attributes for the tag exist, their names and permitted values appear in a white
region appended to the node.

* Ifthe number of occurrences of a node is variable, the allowed range for the number
of repetitions appears below the lower right corner of the node. The number of
occurrences can range from zero to unbounded.

* A mandatory sequence for nodes in a data structure is shown by sequence numbers
in solid circles at the left of each node in the sequence.

HIGH-LEVEL TAGS IN SERENA XML

Afew tags at the highest levels in the Serena XML document hierarchy are used consistently
in all XML instance documents. These consistent usage patterns persist despite variations in
the low-level service object called, the function requested of that object, or the scope of
action requested. These high-level tags are documented below.

<service> Tag: The Root Data Element

The root data element in an XML Services message document is marked by the <service>
tag. The <service> tag identifies the low-level service object that processes the message
— such as the approver maintenance service (name="approver”) or the package
management service (name="package”).

The <service> tag represents a complex data element with one attribute and one
subordinate data element (or subtag). All attributes and subtags are required. The
<service> tag data structure is summarized in Exhibit 2-4.

35

Chapter 2: XML Syntax Basics

Exhibit 2-4. Data Structure for Serena XML <service> Tag

Data Type &

Attribute or Subtag Use Occurs Length Description and Values

name Required 1 String (8), Attribute. XML service object name.
variable Actual data length and value fixed for

each service object. See Exhibit 2-10 for
allowed values.

N

<scope> Required Complex Element. See <scope> tag.

<scope> Tag

The <scope> tag is the sole subtag of the <service> data element. It identifies the types of
objects or class of services to be included in the scope of the service object’s operations.
Example scopes include global records (name="gb1”), application records (name="ap1”),
package records (name="pkg”), component records (name="cmponent”), and service-
wide functions (name="service”). The chosen scope must be compatible with the
requested service. Valid combinations are listed at the end of this chapter in Exhibit 2-10 and
Exhibit 2-11.

The <scope> tag represents a complex data structure that has one attribute and one subtag.
Both are required. The <scope> data structure is summarized in Exhibit 2-5.

Exhibit 2-5. Data Structure for Serena XML <scope> Tag

Data Type &

Attribute or Subtag Use Occurs Length Description and Values

name Required 1 String (8), Attribute. XML scope name. Must be
variable compatible with service name. Actual

data length & value fixed for each service
& function. See Exhibit 2-10 for values.

—_

<message> Required Complex Element. See <message> tag.

<message> Tag

The XML Services <message> tag occurs as a subtag of <scope>. It identifies the task to be
performed by the requested service within the requested scope of action. Example message
names include create (name="create”), delete (name="delete”), update
(name="update”), list (name="11ist”), and approve (name="approve”). Message
names must be consistent with the higher-level service and scope names. Valid combinations
of service, scope, and message attribute names are listed at the end of this chapter in
Exhibit 2-10 and Exhibit 2-11.

The <message> tag delimits a complex data element with one attribute and four optional
subtags. Subtags must appear in sequence. The use and/or structure of each subtag
depends on the service/scope/message combination in the XML document.

36

ChangeMan® ZMF XML Services User's Guide

The <message> tag data structure is summarized in Exhibit 2-6.

Exhibit 2-6. Data Structure for Serena XML <message> Tag

Data Type &
Attribute or Subtag Use Occurs Length Description & Values
name Required 1 String, Attribute. XML message type name for
variable service and scope. Actual data length and
value fixed for each service object and
function. Allowed values appear in
Exhibit 2-10.
<header> Requiredin | 0-1 Complex Element. Consistent substructure
mainframe whenever used. See <header > tag
batch jobs. below.
<request> Requiredin | 0-1 Complex Element. Structure varies with service,
requests. scope, and message. See particular
Not used in <request> tag for desired user task
replies. elsewhere in this manual.
<result> Optionalin |0 -0 Complex Element. Structure varies with service,
replies. scope, and message. See particular
Not used in <result> tag for desired user task in
requests. XML Services User Guide.
<response> Requiredin {0 -1 Complex Element. Consistent substructure
replies. whenever used. See <response> tag
Not used in below.
requests.

<header> Tag

The <header> tag is a subtag within the <message> data structure. It contains routing and
test options specific to the ChangeMan ZMF mainframe environment and is required only for
TSO batch jobs. It does not appear in reply messages or in request messages submitted
interactively.

Syntactically, the <header> tag takes the following general form:

<header>
<subsys>P</subsys>
<product>CMN</product>
<test>T</test>
</header>

Note the absence of a name attribute.

Data structure details for the <header> tag appear in Exhibit 2-7.

37

Chapter 2: XML Syntax Basics

38

Exhibit 2-7. Data Structure for Serena XML <header> Tag

Data Type &

Attribute or Subtag Use Occurs Length Description & Values

<subsys> Required 1 String (1) Element. One-byte identifier for
ChangeMan ZMF instance or subsystem
to which request is addressed.

<product> Optional 0-1 String (3) Element. Mnemonic for product to run
under subsystem in <subsys> tag.
Values:
CMN = ChangeMan ZMF (default)
XCH = Exchange (ZDD)

<test> Optional 0-1 String (1) Element. Used only at request of Serena
Customer Support personnel for
diagnostic purposes. Values:
T = Enable test mode

<warn> Optional 0-1 String (1) Element. Used to enable XML WARN
Facility for this XML request. See “Wamn -
XML Tag Name Warning” on page 621.
This overrides the XML WARN Facility
specification for the started task. Values:
Y = Enable XML Warning

<request> Tag

The <request> tag is a subtag within the <message> data structure. It contains the actual
content of a Serena XML request message and appears in all requests.

The syntax and structure of the <request > tag varies with the service/scope/message
combination used in the XML message document. It takes no attributes, and on occasion it
may even be empty (i.e., contain no subtags). Further information about specific <request>
tag structures appears later in this manual.

<result> Tag

The <result> tag is a subtag within the <message> data structure. It appears only in reply
messages and contains the output data, if any, generated by a low-level service object in
response to a Serena XML request. It takes no attributes.

The <result> tag may be repeated 9,999 times to accommodate multiple result records.
For reasons of performance and to minimize memory demands, ZMF limits the maximum
number of occurrences of any tag -- including the <results> tag -- to 9999. Each <result>
tag in a series may contain, for example, a line of code in a browsed component or an item in
a list of search results. Alternatively, the tag may not appear at all.

All <result> tags in a Serena XML reply message appear before the final <response>
tag, which contains the return code indicating whether or not the service completed

ChangeMan® ZMF XML Services User's Guide

successfully. The syntax and structure of the <result> tag varies by the service/scope/
message combination used in the document.

Further information about specific <result> tag structures appears later in this manual.

<response> Tag

The <response> tag is a subtag of the <message> data structure. It contains a mainframe
return code, reason code, and/or message concerning the success or failure of your request.
The <response> tag appears in every reply message issued by XML Services.

The structure of the <response> tag is consistent across all service objects and functions,
all client environments, and all client products. It contains one required subtag and two
optional subtags in a fixed sequence. It takes no attributes.

Syntactically, the <response> tag takes the following general form:

<response>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>0000</statusReasonCode>
<statusMessage>Contents of message.</statusMessage>
</response>

You should always monitor the contents of the <statusReturnCode> tag to trap error
conditions. The value returned will be ‘00’ if your request executed successfully. Successively
higher numeric values correspond to increasingly severe error conditions. System error
codes and ABENDs may append an alphanumeric prefix to the code. You should familiarize
yourself with ChangeMan ZMF return codes and messages before taking action on the
<statusReturnCode> subtag or other elements of the <response> tag.

Data structure details for the <response> tag appear in Exhibit 2-8.

Exhibit 2-8. Data Structure for Serena XML <response> Tag

Data Type &
Subtag Use Occurs Length Description & Values
<statusReturnCode> Required 1 String (4), Element. ChangeMan ZMF return code
variable indicating successful completion or class

and severity of error. Typical values:

00 - Execution successful
04 - Warning message
08 - Processing error (e.g.,
package does not exist)
16 - Syntax error (e.g.,
unrecognized tag, possibly because
of incorrect case)
NOTE: Higher values indicate more
severe errors. Abend or system error
return codes may exceed 2 bytes &
include alphanumerics.
NOTE: Always check this tag to
determine success of XML request.

39

Chapter 2: XML Syntax Basics

Exhibit 2-8. Data Structure for Serena XML <response> Tag (Continued)

Data Type &
Subtag Use Occurs Length Description & Values
<statusReasonCode> Optional 0-1 String (4), Element. ChangeMan ZMF reason code
variable indicating type or cause of error, if any.
Generally the status codes in XML
replies are the same as the internal
message numbers. For example, a
status code of 8203 corresponds to
SERNET message SER8203x
<statusMessage> Optional 0-1 String (255), | Element. ChangeMan ZMF message
variable text associated with the return code and
reason code, if any.

FILTERING XML SERVICES MESSAGES

The ChangeMan ZMF XML Services API, like all text markup languages, is verbose.
Occasionally, when large volumes of data are returned in response to a request, the verbosity
of XML can overwhelm working storage capacity or severely degrade performance. To
address this issue, Serena XML supports custom result filtering for XML services that accept
<request> subtags in the request message and return <result> tags in the reply. This is
accomplished by using the optional <includeInResult> tag in the <request> data
structure.

<includelnResult> Tag

The <includelInResult> tag applies to all XML services with explicit <request> subtags
in the request message and explicit <result> subtags in the reply.

The <includeInResult> tag explicitly identifies the subtags to include in the <result>
tags returned in the XML reply message. The tag is repeatable to accommodate multiple
<result> subtags. If used, only the subtags explicitly named in an instance of
<includeInResult> will be returned. All other subtags normally returned in the <result>
by the service are suppressed.

The <includelnResult> tag filters returned tags only. XML Services uses this tag to post-
process reply messages and strip out extraneous tags as it builds each <result> data
element. The <includelInResult> tag has no effect on the filtering applied by a service
when identifying which records to process or include in a report.

An example of the <includeInResult> tag in a package general search follows. This
example requests a search for all packages in frozen status. But the full set of <result>
tags is not desired in the reply; instead, only the <package> tag and <auditReturnCode>
will be returned.

Data structure details for the <includeInResult> tag appear in Exhibit 2-9.

40

ChangeMan® ZMF XML Services User's Guide

XML Example — Filtering a General Package Search with <includelnResult>

<?xml version="1.0"” encoding="UTF-8"?>
<service name="PACKAGE”">
<scope name="GENERAL">
<message name=""SEARCH”>
<request>
<searchForFrozenStatus>Y</searchForFrozenStatus>
<includeInResult>package</IncludeInResult>
<includeInResult>auditReturnCode</IncludeInResult>
</request>
</message>
</scope>
'%Fo_WJﬁob

Exhibit 2-9. <includelnResult> Data Structure

Data Type &
Subtag Use Occurs | Length Description & Values
<includelnResult> Optional in any 0-00 String (255), | Contains desired <result>
<request> variable subtag name without angle brackets.
tag NOTE: Value is case-sensitive.

SERVICE, SCOPE, AND MESSAGE SUMMARY

Only certain combinations of service, scope, and message name attributes are valid in
Serena XML. The combination chosen must make sense for the low-level service object
invoked and for the task or information desired. Valid service/scope/message combinations
are listed in the following tables:

» Core XML Services Summary
* ERO XML Services Summary

Core XML Services Summary

Valid combinations of service, scope, and message names for the core XML Services
functions are listed in Exhibit 2-10. Names of the corresponding COBOL copybooks are also
listed for each function.

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

Service Scope Message COBOL

Name Name Name Description of Function Copybook

approver apl * list « List default approver list for application + XMLCAAPR
pkg * list * List package approvers + XMLCPAPR

41

Chapter 2: XML Syntax Basics

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

(Continued)
Service Scope Message COBOL
Name Name Name Description of Function Copybook
baselib service o list * List baseline library records + XMLCBASL
calendar service * list « List calendar records by site + XMLCCLDR
cmponent |apl cdsc |- find * Find application-level component description « XMLCACGD
o list « List application-level component description * XLMCACGD
apl_dprc | * check » Check designated build procedure for component + XMLCADCP
« find * Find components with designated build procedures |+ XMLCADCP
* list « List designated build procedures for component + XMLCADCP
apl_secr |+ check » Check security authorization for component + XMLCACSC
« find + Find security entity for component + XMLCACSC
o list * List security entities for component + XMLCACSC
chg_desc |- list « List active component change description * XMLCPSVD
gbl_cdsc |- list * List global component description « XMLCGCGD
gbl_dprc |- list * List global component build procedure « XMLCGDCP
gbl_secr |- list * List global component member-level security setting | «+ XMLCGCSC
history o list * List comprehensive component history * XMLCCHIS
* listbase * List baselined component history + XMLCCHIS
* listconc « List concurrent development history of component *+ XMLCCHIS
* listcurr * List current component history + XMLCCHIS
* listshrt « List active component history (short list) + XMLCCHIS
lod_subr |- list * List component subroutines + XMLCPINC
pkg_comp | list « List source/copybook relationship (ISAL/ICPY) + XMLCPSCC
records for components in package
pkg_lod * list « List load-to-source relationship (ILOD) records for + XMLCPILC
components in package
pkg_ util o list * List scratch/rename (IUTL) records for components |+ XMLCPUTL
in package
pkg_wrkl | list * List users working on component (ICWK) + XMLCPCUW
prm_hist |« list * List component promotion history * XMLCPPCH
service * browse » Browse (or download) component + XMLCCBRW
* build * Build component (with stage & compile options) *+ XMLCBULD
* checkin » Check in component * XMLCCKIN
» checkout |+ Check out component *+ XMLCCKOT
» compare |+ Compare component in package vs baseline * XMLCCMPR
* lock » Lock component * XMLCCLCK
* recomp » Recompile component from baseline * XMLCRCMP
* relink * Relink component from baseline * XMLCRLNK
* rename * Rename a component/member * XMLCSCRN
« scratch » Scratch a component/member + XMLCSCRN
* unlock * Unlock component * XMLCCLCK

42

ChangeMan® ZMF XML Services User's Guide

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks
(Continued)

Service Scope Message COBOL
Name Name Name Description of Function Copybook
src_incl * list « List source-to-included-copies relationship records |+ XMLCPISC
» count for components in package * XMLCPISL
* nolocate |+ count of included copybooks for a source component |+ XMLCPISL
* locate in package + XMLCPISL
« list of included copybook names (baseline I/A or
package records)
» list of included copybook names along with their
physical location in lifecycle
Ssv_ver o list « List component staging version change description o | «+ XMLCPSSV
* retrieve * Retrieve staging version of component + XMLCPSSV
db2admi |apl_actv |- list « List active DB2 records for application + XMLCAAD2
n
apl_logl * list « List logical DB2 records for application * XMLCALD2
gbl_logl * list « List global DB2 logical records *« XMLCGLD2
gbl_phys |- list « List global DB2 physical records + XMLCGPD2
dss ispfile * list « List ISPF file + XMLCDSIN
service « allocate * Allocate dataset + XMLCDSAL
» basestat |-« List statistics for baseline library member + XMLCDSBS
* delete * Delete dataset + XMLCDSDE
» expand » Expand baseline member in SRD format * XMLCDSEX
* info » Get dataset allocation information + XMLCDSIN
* list « List dataset member, directory entries, & hash token | « XMLCDSLI
* mbrdel * Delete dataset member + XMLCDSMD
« stclist « List datasets allocated to requested DDNAME by the |+ XMLCDSST
ZMF started task
environ service * list * List ChangeMan ZMF environment parameters + XMLCENVR
file dirs o list * List HFS directories * XMLCFILL
files o list « List HFS files in a directory * XMLCFILL
service » access * List HFS (Hierarchical File System) file access * XMLCFILA
 change » Change HFS file attributes * XMLCFILC
* copy » Copy HFS file * XMLCFILC
* create » Create HFS file * XMLCFILC
* delete Delete HFS file + XMLCFILD
» download |+ Download HFS file * XMLCFILE
* export » Export HFS file * XMLCFILE
* import * Import HFS file * XMLCFILL
* link * Link HFS file * XMLCFILC
o list * List HFS file contents * XMLCFILC
* mkdir » Make an HFS file directory * XMLCFILC
* rename * Rename an HFS file or directory * XMLCFILU
* rmdir * Remove an HFS file directory * XMLCFILM
* scan » Scan HFS files for requested strings * XMLCFILS
* upload » Upload HFS files * XMLCFILU
forms gbl * list + List global online forms + XMLCGOFM

43

Chapter 2: XML Syntax Basics

44

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

(Continued)
Service Scope Message COBOL
Name Name Name Description of Function Copybook
pkg * approve Approve online form for package * XMLCPOFM
» comment |+ Add comment or reject reason to form for package |+ XMLCPOFM
* detall + List online form details for package *+ XMLCPOFM
* list « List online form for package *+ XMLCPOFM
* reject * Reject online form for package « XMLCPOFM
* submit » Submit online form for package *+ XMLCPOFM
impact bun o list * List BUN library type information + XMLCIABN
cmponent | e list * List impact analysis information for component * XMLCIACM
table * list « List impact analysis table + XMLCIATB
imscrgn apl o list « List IMS control region defaults for application + XMLCAICR
gbl * list « List global IMS control region defaults *« XMLCGICR
imsovrd apl * apl_dbd « List IMS DBD overrides for application * XMLCAIOR
* apl_psb « List IMS PSB overrides for application * XMLCAIOR
gbl * gbl_dbd * List global IMS DBD overrides + XMLCGIOR
* gbl_psb « List global IMS PSB overrides * XMLCGIOR
pkg * pkg_dbd |- List IMS DBD overrides for package *+ XMLCPIOR
» pkg_psb | List IMS PSB overrides for package + XMLCPIOR
language |apl * list « List default programming language for application + XMLCALNG
gbl * list « List global default programming language * XMLCGLNG
libtype apl * list « List library types defined for application * XMLCALTP
gbl * list » List globally defined library types * XMLCGLTP
pkg * list « List library types defined for package * XMLCPLTP
log service * create « Create activity log entry *+ XMLCALOG
* list « List activity log entries + XMLCALOG
notyfile service » download |+ Download the global notification file * XMLCNTFI
* upload » Upload the global notification file * XMLCNTFI

ChangeMan® ZMF XML Services User's Guide

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

(Continued)
Service Scope Message COBOL
Name Name Name Description of Function Copybook
package |aff apls * list « List affected applications * XMLCPAAP
approve * search » Search for packages pending approval * XMLCPSCH
check » promote |+ Check promotion readiness of package * XMLCPPRM
cleanup * demote » Demote package & clean up promotion libraries * XMLCPPRM
cmponent | ¢ integrty » Check component integrity of package * XMLCPINT
cmp_desc | - list » List component description records for package *+ XMLCPCDS
forms * refreeze |+ Refreeze online forms for package + XMLCPFRZ
» unfreeze |+ Unfreeze online forms for package * XMLCPFRZ
gen_desc |- list « List general description of package + XMLCPDSC
gen_prms | ° list « List general parameters for package * XMLCPGPM
 refreeze |+ Refreeze general parameters for package + XMLCPFRZ
» unfreeze |+ Unfreeze general parameters for package « XMLCPFRZ
general * search » General package search *« XMLCPSCH
imp_inst * list « List implementation instructions + XMLCPIMI
ims_acb * list * List IMS ACB control blocks + XMLCPIAS
ims_crgn |« list « List IMS control regions for package + XMLCPICR
limbo * search + Search for limbo packages *« XMLCPSCH
non_src refreeze | » Refreeze non-source modules in package « XMLCPFRZ
* unfreeze |+ Unfreeze non-source modules in package « XMLCPFRZ
pkg_link o list « List linked packages * XMLCPLNK
* search + Search for linked packages + XMLCPSCH
prm_cmp |- list * List component promotion history for package *« XMLCPPRC
prm_hist |« list « List promotion history for package * XMLCPPRH
prm_ovly |« list * List overlaid components for package promotion * XMLCPPRO
promote * lock » Lock promotion site for a package * XMLCPPLU
prt_pkgs o list « List participating packages * XMLCPPPK
reasons * list « List reasons for backout or revert + XMLCPRBR
sch recs |- list « List installation schedule for package + XMLCPSCD
scr_ren refreeze | » Refreeze scratched/renamed member * XMLCPFRZ
* unfreeze |+ Unfreeze scratched/renamed member + XMLCPFRZ

45

Chapter 2: XML Syntax Basics

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

(Continued)
Service Scope Message COBOL
Name Name Name Description of Function Copybook
service * approve » Package approval action * XMLCPAPV
* audit Audit a frozen package + XMLCPAUD
* backout » Back out installed package from production + XMLCPBKO
* create + Create change package « XMLCPCRT
* delete + Memo-delete change package * XMLCPMDL
» demote » Demote a promoted change package (no cleanup) |+ XMLCPPRM
* freeze » Freeze package * XMLCPFRZ
» promote |+ Promote package to next promotion library * XMLCPPRM
* revert * Revert package to development status « XMLCPRVT
* submit » Submit package for file tailoring and JCL build « XMLCPFTC
» summary |« List package summary statistics *+ XMLCPSUM
sites * refreeze |« Refreeze site records for package + XMLCPFRZ
» unfreeze |+ Unfreeze site records for package + XMLCPFRZ
src_lod * refreeze |+ Refreeze source & load modules in package * XMLCPFRZ
» unfreeze |+ Unfreeze source & load modules in package + XMLCPFRZ
usr_recs * list « List user records for package + XMLCPURC
parms apl o list » List general parameters for application * XMLCAPRM
gbl o list » List global default general parameters *+ XMLCGPRM
procs apl * list « List application procedures *+ XMLCAPRC
gbl o list * List global procedures *+ XMLCGPRC
prodlib service o list * List production libraries + XMLCPRDL
promlib library * list « List promotion library records + XMLCPRLN
site * list « List promotion site records * XMLCPRSN
reasons |service o list » List global reason codes for unplanned changes *+ XMLCGRSN
schedule | service * hold » Hold scheduled package installation *+ XMLCSCHD
o list * List installation schedule records + XMLCSCHD
* release » Release held package installation *+ XMLCSCHD
site apl * list « List site records for application * XMLCASIT
gbl * list » List global site records * XMLCGSIT
pkg * list » List site records for package * XMLCPSIT
system environ * list + List SERNET environment parameters + SERVSYSO
service * list * List system setup & install parameters + SERVSYSO
user service * notify » Sends notification message to user * XMLCNTFY
util line * print + SERNET print service + XMLCUTIL

46

ChangeMan® ZMF XML Services User's Guide

ERO XML Services Summary

Valid combinations of service, scope, and message names for the Enterprise Release Option
(ERO) functions supported by XML Services are listed in the following tableExhibit 2-11.
COBOL copybook names are also listed for each function. These services are shown here
for completeness; they are documented in the ChangeMan ZMF ERO XML Services User’s

Guide.

Exhibit 2-11 . ERO XML Service, Scope, and Message Names with COBOL Copybooks

Service Scope Message COBOL
Name Name Name Description of Function Copybook
package service « attach + Attaches a package to a release + XMLCPGPM
* detach + Detaches a package from a release * XMLCPGPM
rlsmappl promote o list + Lists release management promotion data * XMLCRPRM
service o list + Lists application release status + XMLCRAPL
* release + Lists release data for each release to which an application | «+ XMLCRARL
is joined
syslib * list + Lists SYSLIB data for release applications + XMLCRASY
rlsmappr | area * list + Lists release area approver data « XMLCRAAP
ascapprv | e list + Lists the items that are associated with an approval entity | « XMLCRASC
global * list + Lists global release approval entity data * XMLCRGAP
release * list + Lists data for install approval entities + XMLCRAAP
rlsmarea all_chk * syslib « Lists the COPYLIB, LOADLIB, and source concatenation |+ XMLCRSYL
lists for libraries that are allocated
all_noc * syslib « Lists all of the COPYLIB, LOADLIB, and source concate- |+ XMLCRSYL
nation lists, including libraries that are not yet allocated
cim o list + Lists release area component in motion (CIM) information | « XMLCRCIM
from the ERO DB2 CIM table
cmp_lock |- list + Lists the holder of a release component lock * XMLCRCLK
cpy * syslib « Lists the COPYLIB concatenation for a release application | « XMLCRSYL
detail » cmp_rise |+ Lists all components in a release concatenation and shows | «+ XMLCRCML
all locations where each component resides
* integrty + Checks the integrity of the component-in-motion (CIM) * XMLCRCHK
table against physical members in area libraries. Checks
all versions of all components in the release concatena-
tion.
* test + Tests the contents of a release area against all of the pack- | «+ XMLCRTST
ages that may place a component in that area. Lists infor-
mation for failing components and packages.
hst o list + Lists history from the ERO component history table * XMLCRHST
imp * list + Lists impact data from the ERO DB2 impact table + XMLCRIMP
load * syslib » Lists the LOADLIB concatenation for a release application |+ XMLCRSYL

47

Chapter 2: XML Syntax Basics

Exhibit 2-11 . ERO XML Service, Scope, and Message Names with COBOL Copybooks

Service Scope Message COBOL
Name Name Name Description of Function Copybook
scan » cmp_rise |+ Scans the latest version of components in a release con- | + XMLCRCML
catenation to find those with content matching a search
string
scanall » cmp_rise [+ Scans all components in a release concatenation to find * XMLCRCML
those with content matching a search string
service o list * Lists release area definitions + XMLCRARE
* test « Tests the contents of a release against all of the packages |« XMLCRTST
that may place a component in that release. Displays a
message describing the status of packages and compo-
nents in the release.
source * syslib * Lists the source SYSLIB information for a library type * XMLCRSYL
start o list « Lists the release area definitions for a starting area + XMLCRARE
summary |+ cmp_rise |¢ Lists information for the latest version of each component |+ XMLCRCML
in a release concatenation
* integrty + Checks integrity of the component-in-motion (CIM) table o XMLCRCHK
against physical members in area libraries.
syslib o list + Lists SYSLIB data for an application + XMLCRASL
ver_regr o list + Performs a version regression check on components. Ifa |« XMLCRVER
version regression situation exists between the current
release and a prior release, lists information for the current
and prior versions.
rismlityp bun * list + Lists information from the release BUN library-type table + XMLCRBUN
service * list « Lists library security and format information * XMLCRLTP
rismrise cim o list * Lists release area component in motion (CIM) information |« XMLCRLCM
from the ERO DB2 CIM table
detail * test + Tests the contents of a release against all of the packages | «+ XMLCRTSC
that may place a component in that release
hst o list « Lists release component history from the ERO component | « XMLCRLHT
history table
imp * list + Lists impact data from the ERO DB2 impact table * XMLCRLMP
library * list « Lists release area libraries * XMLCRLLT
prior * list « Lists prior release information * XMLCRLPR
reasons o list + List Backout and Revert reasons for a release + XMLCRRBR
rls_link * list « Lists release management data across a TCP/IP link * XMLCRLLK
service o list » Lists scheduler dates, times, and status for a release * XMLCRLSM
* search + Searches for releases and lists information + XMLCRSRC
* test « Tests the contents of a release against all of the packages | « XMLCRTSC
that may place a component in that release. Displays a
status message.

48

ChangeMan® ZMF XML Services User's Guide

Exhibit 2-11 . ERO XML Service, Scope, and Message Names with COBOL Copybooks

Service Scope Message COBOL
Name Name Name Description of Function Copybook
sites * list « Lists releasef/site dates and contacts « XMLCRSTE

49

Chapter 2: XML Syntax Basics

50

PACKAGE MANAGEMENT

Package management messages in Serena XML fall into four user task categories:

Package Lifecycle Tasks — Tasks that comprise a major step in the lifecycle of a
change package as a whole. These include package commands such as package create,
delete, freeze, promote, and approve.

Package-Level Component Change Management — Tasks related to the
component lifecycle but which apply to one or more components of a package as a group.
Package-level component groups include source and load modules, non-source
modules, and scratch/rename records. Commands include unfreeze, refreeze, and list.

Package Validation Tasks — Tasks that identify dependencies among package
components, verify the integrity of package components, or check for versioning
differences across components in different stages of development. These include
package commands such as list, check component integrity and audit.

Package Information Management Tasks— Tasks that retrieve or manage
descriptive metadata or control information about a package. Such information includes
the package description, general package parameters, working component descriptions
for the package, participating package records, affected application records, package-
level site records, the package approver list, package promotion history, user-defined
variables for a package, and similar records. Supported commands include /ist.

PACKAGE MESSAGE SYNTAX

Identifying Package Messages

Serena XML package messages contain syntax that tells ChangeMan ZMF to perform a task
against a package rather than some other object. This occurs in one of two ways. Most
commonly, the name attribute in the <service> takes the value “PACKAGE”, as follows:

<service name="PACKAGE”>

However, some non-package services — such as the approver maintenance service and the
site maintenance service — support a package-level scope of action. These identify a
package-level task by the name attribute of the <scope> tag, which takes the value “pkg”

or something similar (e.g., “pkg_comp”, “pkg_1lod”, and so on). For example:

<service name="SITE”>
<scope name="PKG”>

51

Chapter 3: Package Management

52

Finally, some services are only implicitly allied to package management; there is no explicit
syntax to make that relationship clear. For example, the package installation scheduler
service works with install schedules one package at a time. It does not identify its scope as
package-specific, though, because its present design gives the scheduler no other scope
options.

Where explicit syntax exists, the same attributes appear in both request and reply messages.
In requests, they tell ChangeMan ZMF to execute a package-level function. In replies, they
tell your XML message processing software to parse the returned message for package data.

Package Naming Conventions

Package Name Tags

Two methods exist in Serena XML to identify a package to ChangeMan ZMF. The first uses
the <package> tag to supply a complete package name. The second concatenates the
<applName> tag, which identifies the application to which a package belongs, with the
<packagelId> tag, which contains the unique number of the package within its application.
Together, the <app1Name> and <packageId> tags yield the same package identifier as that
supplied in the <package> tag. Either method is acceptable to ChangeMan ZMF.

Embedded Blanks in the <package> Tag

The <package> tag appears as a subordinate data element in nearly all package
management data structures. For ChangeMan ZMF, this tag takes a 10-byte fixed-format
value, as follows:

<package>aaaannnnnn</package>, where:

aaaa = application name. If less than 4 characters, right-fill with blanks.
nnnnnn = package ID number. If less than 6 digits, left-fill with zeroes.

For example, a package name for ChangeMan ZMF that uses a 3-byte application name
must include an embedded blank to fill out the application name portion of the <package>
tag data, as follows:

<package>TST 123456</package>

Special Tag Syntax for Package Management

Serena XML supports up to 72 user-defined package variables that are established by users
when customizing ChangeMan ZMF on the mainframe. These variables are stored in the
package master.

The Serena XML tag names for these user-defined package variables use the following
naming convention:

<userVarLenxxyy>
where:

* xx = length of variable data in bytes, formatted as 1-digit or 2-digit integer

ChangeMan® ZMF XML Services User's Guide

* yy = unique 2-digit integer identifier for this particular variable of length xx

For example, <userVarLenl1@3> represents the third user-defined variable with a length of
one byte. Similarly, <userVarLen4405> is the fifth variable with a length of 44 bytes.

Serena XML provides 16 such tags for variables of 1 byte each in length, 11 tags of 2 bytes
each, 10 tags of 3 bytes each, 10 tags of 4 bytes, 10 tags of 8 bytes, 5 tags of 16 bytes, 5
tags of 44 bytes, and 5 tags of 72 bytes.

PACKAGE LIFECYCLE TASKS

Serena XML supports the following package lifecycle tasks for general use:

* Create a Package - PACKAGE SERVICE » Demote a Package with Cleanup -

CREATE PACKAGE CLEANUP DEMOTE

» Delete a Package - PACKAGE SERVICE » Approve a Package - PACKAGE SER-
DELETE VICE APPROVE

* Freeze a Package - PACKAGE SERVICE * List Package Installation Schedule -
FREEZE SCHEDULE SERVICE LIST

» Submit a Package for JCL Build - PACKAGE -+ Hold Package Install Job - SCHEDULE
SERVICE SUBMIT SERVICE HOLD

* Check a Package for Promotion Readiness - + Release Package Install Job - SCHED-
PACKAGE CHECK PROMOTE ULE SERVICE RELEASE

* Promote a Package - PACKAGE SERVICE -+ Back Out a Package - PACKAGE SER-
PROMOTE VICE BACKOUT

» Lock Promotion Site for Package - PACKAGE + Revert a Package - PACKAGE SER-
PROMOTE LOCK VICE REVERT

» Demote a Package - PACKAGE SERVICE .
DEMOTE

Create a Package - PACKAGE SERVICE CREATE

The package create message in Serena XML creates an empty change package in the
staging area. A parent application must already exist to provide default settings for the new
package.

The Serena XML service/scope/message tags and attributes for a package creation
message are:

<service name="PACKAGE”>
<scope nhame="SERVICE”>
<message name="CREATE”>

These tags appear in both requests and replies.

53

Chapter 3: Package Management

54

PACKAGE SERVICE CREATE Requests

The Serena XML syntax for a package creation request varies with the creation method you
select. Three creation methods exist:

Short Method — Supplies only the minimum information required by the package master
database. Complete information is supplied later via package updates using the
ChangeMan ZMF ISPF interface. (Serena XML does not support updates to package
master records for general use.)

Copy Forward (or Clone) Method — Copies values from a preexisting model package

into the new package master entry. Changes are made later via package updates using

the ChangeMan ZMF ISPF interface. (Serena XML does not support updates to package
master records for general use.)

Long Method — Supplies all package master information in a single step. No
subsequent updates are required. If you want to set the values of any user-defined
variables for a package, you must use this method of package creation.

Choose a creation method using the <createMethod> subtag of the <request> message.

Example XML — PACKAGE SERVICE CREATE Request.

<?xml version="1.0"?>
<service name="PACKAGE">

<scope name="SERVICE">

<message name="CREATE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<applName>ACTP</applName>
<createMethod>0</createMethod>
<packagelLevel>1</packagelLevel>
<packageType>1</packageType>
<reasonCode>000</reasonCode>
<requestorDept>IDD</requestorDept>
<requestorName>USER24</requestorName>
<requestorPhone>555 5555</requestorPhone>
<packageTitle> TEST XML PACKAGE SERVICE CREATE</packageTitle>
<packageDesc>TEST XML PACKAGE SERVICE CREATE</packageDesc>
<packageImplInst>TEST XML PACKAGE SERVICE CREATE</packagelmplInst>
<siteInfo>
<siteName>SERT8</siteName>
<installDate>20091231</installDate>
<fromInstallTime>0100</fromInstallTime>
<toInstallTime>0200</tolInstallTime>
<contactName>USER24</contactName>
<contactPhone>555 5555</contactPhone>
<alternateContactName>USER24</alternateContactName>
<alternateContactPhone>555 5555</alternateContactPhone>
</sitelnfo>

ChangeMan® ZMF XML Services User's Guide

</request>
</message>
</scope>
</service>

The foregoing example requests the creation of a simple, planned, permanent package using
the “short” method. The package is part of the “ACTP” application. Installation is scheduled
for one production sites.

As the example illustrates, the <sitelInfo> tag represents a complex data element A
complex data element consists of other XML tags, rather than simple data. Such markup
syntax, which potentially nests tags within tags within tags to any depth, is how XML
implements its hierarchical tree data structure in a text data stream.

In addition, <siteInfo>is a repeatable tag. A repeatable tag allows a variable number of
consecutive repetitions to accommodate multiple instances of similarly structured
information. For example, <sitelInfo> can be repeated for each site where the newly
created package will be installed. Repeatable tags enhance scalability in XML data
structures.

Note that the XML data structures for package request and reply messages do not specify
any particular order for the occurrence of tags. You must rely on tag name rather than tag
ordinal position in a sequence to convey information to ChangeMan ZMF. Sequence within a
data structure is not preserved.

For example, a package may be installed across multiple sites in any order. This is not
necessarily the order you list your <sitelnfo> data elements. Similarly, if you schedule multiple
predecessor jobs to occur before package install, they may execute in any order so long as
they precede package installation. You cannot assume that predecessor jobs will execute in
the order you list them in your XML request.

3 Caution

Tag sequence is not preserved in package request and reply messages
using Serena XML. Use tag names rather than tag ordinal position in a
sequence to convey information to ChangeMan ZMF.

55

Chapter 3: Package Management

56

Data structure specifications for the package creation <request> tag appear in Exhibit 3-1.

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<affectedAppIName> Optional 0-o00 | String (4), Name of application affected by one or
variable more participating packages in this
complex/super package. Repeatable for
multiple applications.
NOTE: Valid only for complex or super
packages.
NOTE: If <partPackageName>
used, at least one instance of this tag is
required.
<appIlName> Required 1 String (4), Parent application name for new change
variable package.
<complexSuperPackage> Optional 0-1 String (10), | Name of complex/super package to which
variable a participating package belongs.
NOTE: Valid only when creating a
participating package.
NOTE: Required if <packagelLevel>
value is 4.
<complexSuperPackageAppl> | Optional 0-1 String (4), Application name of model package. Same
variable as<complexSuperPackage>tag’s
first 4 bytes.
<complexSuperPackage- Optional 0-1 Integer(6) Package ID of model package. Same as

Number>

<complexSuperPackage> tag's
last 6 bytes.

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<createMethod>

Required

1

Integer (1)

Package creation method code. Values:

0 = Short creation method
1 = Copy forward (clone) method
2 = Long creation method

NOTE:If<createMethod> valueis 0,
the following additional tags are required:
<packageTitle>,
<packagelevel>,
<packageType>,
<schedulerType>,
<requestorPhone><requesto
rName>,
<problemActionCode>,
<sitelnfo>.
NOTE:lf<createMethod> valueis1,
you must name the package to copy fromin
<packageModel>.
NOTE:If<createMethod> valueis 2,
you must supply all the tags needed when
<createMethod>is 0, plus the
following: <packageDesc>,
<packageImplInst>,
<problemActionCode>.

<otherProblemAction>

Optional

0-1

String (44),
variable

Text of “Other” instructions if installation
problem occurs.

NOTE: Required when value of
<problemActionCode>=3.

<packageApplModel>

Optional

String (4),
variable

Application name of model package. Same
as first 4 bytes of <packageModel>

<packageDesc>

Optional

String (72),
variable

Description of package contents. Multiple
entries of 72 bytes each.

<packagelmplinst>

Optional

String (72),
variable

Package install & implementation

instructions. Multiple tags of 72 bytes each.

NOTE: Order of repeated tags is not
preserved. Add sequence numbers to text
if steps must be performed in order.

57

Chapter 3: Package Management

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<packagelLevel>

Optional

0-1

Integer (1)

Code for package complexity or level in
hierarchy. Values:

1 = Simple package

2 = Complex package

3 = Super package

4 = Participating package
NOTE: If value = 2 or 3, the names of
participating packages are required in the
<partPackageName> tag.
NOTE: If value = 4, you must supply name
of complex/super package in tag
<complexSuperPackage>.

<packageModel>

Optional

0-1

String (10),
variable

Name of source package from which
entries are copied forward (“cloned”) to
new package.

NOTE: This tag is required if value in
<createMethod>=1.

<packageNumberModel>

Optional

0-1

Integer(6)

Package ID of model package. Same as
last 6 bytes of <packageModel>.

<packageTitle>

Optional

0-1

String
(255),
variable

Working title for package. Appears on most
listings & reports.

<packageType>

Optional

0-1

String (1)

Package install type code. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

NOTE: For code values = 2 or 4, the
duration of change is required in
<tempChangeDuration> tag.
NOTE: For values = 3 or 4, a reason for the
unplanned change is required in the
<reasonCode> tag.

<partPackageName>

Optional

String (10),
variable

Name of a participating package pointed to
by this complex/super package record.
Repeatable for multiple participating
packages.

NOTE: Valid only when creating a complex
or super package.

NOTE: Required if <packagelLevel>
value is 2 or 3.

NOTE: Tag <affectedApplName>
is also required if this tag is used.

58

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<problemActionCode> Optional 1 Integer (1) | Code for action to take if problem occurs in
package install. Values:
1 = Hold production & contact
developer for instructions
2 = Back out change, then proceed
with production
3 = Other instructions
NOTE: If value = 3, you must supply
instructions in
<otherProblemAction>.
<reasonCode> Optional 0-1 String (3), Customer-defined reason code for
variable unplanned package installation.
NOTE: Required if <packageType>
value is 3 or 4.
NOTE: Reason codes defined separately
by ZMF administrator.
<release> Optional, 0-1 String (8) Name of ERO release with which package
for ERO is associated.
<releaseArea> Optional, 0-1 String (8) Name of starting release area for ERO
for ERO release package check-in.
<requestorDept> Optional 0-1 String (4), Workgroup or department code for package
variable creator.
<requestorName> Optional 1 String (25), | Name of developer or contact person
I variable responsible for package.
<requestorPhone> Optional 1 String (15), | Phone of developer or contact person
variable responsible for package.
<schedulerType> Optional 1 Integer (1) | Code for type of installation scheduler used
with package. Values:
1 = ChangeMan scheduler
2 = Manual install
3 = Other automated scheduler
<schedulingInfo> Optional 0-00 Complex See <scheduli ngI nfo> subtag.
<sitelnfo> Optional 0-00 Complex See <siteInfo> subtag.
<tempChangeDuration> Optional 0-1 Integer (3) | Number of days for temporary package to
stay installed before automatic backout.
NOTE: Required if <packageType>
value is 2 or 4.

59

Chapter 3: Package Management

60

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<userVarLen101> Optional 0-1 String (1) User-defined variables in ZMF. Total of 15
each individually named, 1-byte tags supported.
. NOTE: See topic “Package User
<userVarLen115> Information” in the ChangeMan ZMF
Customization Guide.
<userVarLen201> Optional 0-1 String (2), User-defined variables in ZMF. Total of 11
each variable individually named, 2-byte tags supported.
<userVarLen211>
<userVarLen301> Optional 0-1 String (3), User-defined variables in ZMF. Total of 10
each variable individually named, 3-byte tags supported.
<userVarLen310>
<userVarLen401> Optional 0-1 String (4), User-defined variables in ZMF. Total of 10
each variable individually named, 4-byte tags supported.
<userVarLen410>
<userVarLen801> Optional 0-1 String (8), User-defined variables in ZMF. Total of 10
each variable individually named, 8-byte tags supported.
<userVarLen810>
<userVarLen1601> Optional 0-1 String (16), | User-defined variables in ZMF. Total of 5
each variable individually named, 16-byte tags supported.
<userVarLen1605>
<userVarLen4401> Optional 0-1 String (44), | User-defined variables in ZMF. Total of 5
each variable individually named, 44-byte tags supported.
<userVarLen4405>
<userVarLen7201> Options 0-1 String (72), | User-defined variables in ZMF. Total of 5
each variable individually named, 72-byte tags supported.
<userVarLen7205>
<workChangeRequest> Optional 0-1 String (12), | Work order ID or change request number
variable for package.
LT
=@ Tip

Tags: <userVarLen101> to <userVarLen7205>. See topic “Package User Information”
in the ChangeMan ZMF Customization Guide.

The <schedulingInfo> and <sitelnfo> tags both represent complex data elements —
that is, they contain tags within tags. Their subordinate data structures are described below.

ChangeMan® ZMF XML Services User's Guide

<schedulinginfo> Subtag

The <schedulingInfo> tag captures installation scheduling dependencies for a package.
Each instance of the tag names a predecessor job and/or a successor job to run before and/
or after the installation of the newly created package. The <schedulingInfo> tag may be
repeated as many times as needed to ensure that all installation prerequisites and follow-up
tasks occur. Data structure details for the <schedulingInfo> tag appear in the following
exhibit.

Exhibit 3-2. <schedulingIinfo> Subtag Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<successorJobName> Optional 0-1 String (8), Must be valid job name for system where
variable install takes place.
<predecessorJobName> Optional 0-1 String (8), Must be valid job name for system where
variable install takes place.

<sitelnfo> Subtag

The <siteInfo> tag provides the site name, contact information, and scheduled package
installation date for a remote production site. The tag may be repeated as many times as
needed to cover all sites where the newly created package will be installed. At least one
instance of the tag is required in a package creation request that uses either the “short” or
‘long” create method. Data structure details for the <siteInfo> tag appear in the following

exhibit:
Exhibit 3-3. <sitelnfo> Subtag Data Structure
Data Type
Subtag Use Occurs | & Length Values & Dependencies
<siteName> Optional 0-1 String (8), Name of site where package will be
variable installed.
<installDate> Optional 0-1 Date, Planned site install date for package. No
yyyymmdd | punctuation.
<fromlinstallTime> Optional 0-1 Time, Start time for period during which site
hhmmss installation of package is planned. 24-hour
format, no punctuation.
<tolnstallTime> Optional 0-1 Time, End time for period during which site
hhmmss installation of package is planned. 24-hour
format, no punctuation.
<contactName> Optional 0-1 String (25), | Name of contact person at remote site to
variable assist with install.
<contactPhone> Optional 0-1 String (15), | Phone of contact person at remote site to
variable assist with install.

61

Chapter 3: Package Management

62

Exhibit 3-3. <sitelnfo> Subtag Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<alternateContactName> | Optional 0-1 String (25), | Name of alternate contact person at
variable remote site to assist with install.
<alternateContactPhone> | Optional 0-1 String (15), | Phone of alternate contact person at
variable remote site to assist with install.

PACKAGE SERVICE CREATE Replies

The Serena XML reply message returns, at most, one <result> data structure, which
reports basic information about the newly created package. Most importantly, the <result>
supplies a unique package name assigned to the package by ChangeMan ZMF.

Following the <result> data structure is the standard <response> data structure, which
indicates the success or failure of the XML request and provides a status message.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

An example Serena XML package creation reply for a simple, planned, permanent package
follows. Tags in bold always occur in a reply. Repeatable tags appear twice for illustration.
Data structure details for the package creation <result> tag appear in Exhibit 3-4.

Example XML — PACKAGE SERVICE CREATE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="CREATE">
<result>
<package>ACTPOOOO12</package>
<applName>ACTP</applName>
<packageld>000012</packageld>
<packagelevel>1</packagelevel>
<packageType>1</packageType>
<packageStatus>6</packageStatus>
<installDate>20091231</installDate>
</result>
<response>
<statusMessage>CMN2100I - ACTPOO0012 change package has been created.</
statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>2100</statusReasonCode>
</response>
</message>

ChangeMan® ZMF XML Services User's Guide

</scope>
</service>

Exhibit 3-4. PACKAGE SERVICE CREATE <result> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
<installDate> Optional 0-1 Date, Planned install date for package, or
yyyymmdd | start date of range.
<package> Optional 0-1 String (10), | Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), | New package ID number generated
variable by ZMF. Same as last 6 bytes of
package name.
<packagelLevel> Optional 0-1 Integer (1) Code for package complexity level.
Values:

1 = Simple package

2 = Complex package

3 = Super package

4 = Participating package

<packageStatus> Optional 0-1 String (1) Code for status of package in
lifecycle. Values:

1 = Approved

2 = Backed out

3 = Baselined

4 = Complex/super pkg closed
5 = Deleted (memo delete)

6 = Development

7 = Distributed

8 = Frozen

9 = Installed

A = Complex/super pkg open

B = Rejected

C = Temporary change cycle
completed

NOTE: Only values 6 or A should
be returned for package create.

<packageType> Optional 0-1 String (1) Package install type code. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

63

Chapter 3: Package Management

64

Delete a Package - PACKAGE SERVICE DELETE

The package deletion function in Serena XML flags or unflags an entire package for deletion.
Deletion (or undeletion) is logical rather than physical. Physical deletion of flagged packages
occurs at a later time under ChangeMan ZMF control.

The Serena XML service/scope/message tags for a package deletion message are:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="DELETE”>

These tags appear in both requests and replies.

PACKAGE SERVICE DELETE Requests
Serena XML supports two kinds of delete requests against a package:

* Logical (“Memo”) Delete — Flags a package for physical deletion at a future time.
Package must be in development status prior to memo deletion. To choose this option,
enter “1”in the <processingOption> tag.

* Logical Undelete — Removes deletion flag from a memo-deleted package. Assumes the
package has not been aged past the scheduled, physical delete date and time. To choose
this option, enter “2” in the <processingOption> tag.

The following example shows how you might code a logical delete request in Serena XML.
Data structure details for the package deletion <request> tag appear in Exhibit 3-5.

Example XML — PACKAGE SERVICE DELETE Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="DELETE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<processingOption>1</processingOption>
<package>ACTPO0O00O15</package>
</request>
</message>

ChangeMan® ZMF XML Services User's Guide

</scope>
</service>

Exhibit 3-5. PACKAGE SERVICE DELETE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag
Use <package> instead of
<applName> &
<packageld>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.
<processingOption> Required 1 Integer (1), 1 = Logical delete
fixed 2 = Logical undelete

PACKAGE SERVICE DELETE Replies

No <result> data structure is returned in the package deletion reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
package deletion request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

Freeze a Package - PACKAGE SERVICE FREEZE

On ChangeMan ZMF servers, a Serena XML package freeze request does two things:

+ It freezes the package against changes.
+ It builds the “.X node” staging library containing file-tailored JCL installation code.

For a freeze request to execute successfully, all of the following conditions must be met:

* The package is in development status.
» All components are active and are at the same promotion level.
* Any online forms in the package have been approved.

65

Chapter 3: Package Management

66

In addition, ChangeMan ZMF normally requires that a package pass the audit process before
a freeze request can execute successfully.

The Serena XML service/scope/message tags for a package freeze message are:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="FREEZE”>

These tags appear in both requests and replies.

PACKAGE SERVICE FREEZE Requests

Serena XML allows you to freeze a package with or without prior validation of the staging
library. Unless you are completely certain that all components in the package are ready to be
frozen, you should validate the staging library as part of your package freeze request.

i

iy
S

Tip

To validate the staging library as part of a package freeze request, enter “1” in the
<validationParm> tag.

The example below shows how you might code a package freeze request in Serena XML.
Data structure details for the package freeze <request> tag follow in Exhibit 3-6.

Example XML — PACKAGE SERVICE FREEZE Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="FREEZE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPO00012</package>
</request>
</message>

</scope>
</service>

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-6. PACKAGE SERVICE FREEZE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> &
<packageld>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.
userVariable01 Optional 0-8 String (8), User variable 01
variable
userVariable02 Optional 0-8 String (8), User variable 02
variable
userVariable03 Optional 0-8 String (8), User variable 03
variable
userVariable04 Optional 0-8 String (8), User variable 04
variable
userVariable05 Optional 0-8 String (8), User variable 05
variable
userVariable06 Optional 0-72 | String (72), User variable 06
variable
userVariable07 Optional 0-72 | String (72), User variable 07
variable
userVariable08 Optional 0-72 | String (72), User variable 08
variable
userVariable09 Optional 0-72 | String (72), User variable 09
variable

67

Chapter 3: Package Management

Exhibit 3-6. PACKAGE SERVICE FREEZE <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
userVariable10 Optional 0-72 | String (72), User variable 10
variable
<validationParm> Optional 0-1 Integer (1) 1 = Validate package readiness
prior to freeze operation

i

iy
S

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

PACKAGE SERVICE FREEZE Replies

No <result> data structure is returned in the reply message for a package freeze request.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Occasionally, a package may freeze successfully but the subsequent file tailoring and JCL
build step may not complete. If this occurs, Serena XML provides a way of finishing the file
tailoring step on its own.

i

iy
S

Tip

Use Serena XML to submit a package for JCL build if the package freeze step is
successful, but the subsequent file tailoring and JCL build step does not complete.
(See Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT.)

Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT

The package service submit request submits a previously frozen package for stage file
tailoring — that is, it builds (or rebuilds) the “.X node” staging library containing file-tailored
JCL installation and backout code. It performs this task at the package level rather than the
component level.

The Serena XML service/scope/message tags for a package submit message are:

<service name="PACKAGE”>
<scope nhame="SERVICE”>
<message name="SUBMIT”>

These tags appear in both requests and replies.

68

ChangeMan® ZMF XML Services User's Guide

When successful, this service submits a JOB with output similar to the following:

SDSF OUTPUT DISPLAY CMN8ADSP S0786765 DSID 4 LINE 71 Cco
COMMAND INPUT ===> SCR
IEF2851 ZMFA.CMN8BADSP.S0786765.D0000106. 7 SYSOUT
IEF2851 ZMFA.CMN8BADSP.S0786765.D0000107.7 SYSOUT
IEF373I STEP/ /START 2009065.0630

IEF3741 STEP/ /STOP 2009065.0630 CPU OMIN 00.47SEC SRB

IEF375I JOB/CMN8ADSP/START 2009065.0630
IEF376I JOB/CMN8ADSP/STOP 2009065.0630 CPU OMIN 00.47SEC SRB
PROG=CMNASPFT, PARMS=PGMCMNVPIJB

0032ACTPOOOO138USER35 Y

READY

END

ChangeMan(R) CMNVPIJB - 6.1.0 File Tailoring

Function : Package install JCL build
Subsystem: 8

Userid : USER24
Package : ACTPO00OO13
Schedule : Y

Date/Time: 2009/03/06 06:30:10

CMN8700I - ACTP000013 Installation JCL Build service completed

PACKAGE SERVICE SUBMIT Request

The following example shows how you might code a package service submit request using
Serena XML. Data structure details for the packageservice submit <request> tags appear
in Exhibit 3-7.

Example XML — PACKAGE SERVICE SUBMIT Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="SUBMIT">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPOOOO13</package>
<cmnSubSystemId>8</cmnSubSystemId>
<requestor>USER24</requestor>
<addSchedulerOption>Y</addSchedulerOption>
</request>
</message>

69

Chapter 3: Package Management

</scope>
</service>

Exhibit 3-7. PACKAGE SERVICE SUBMIT <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<addSchedulerOption> Optional 0-1 String (1) Code to add installation scheduler
record for automated scheduling
system. Values:

Y = Yes, add scheduler record

N = No, don’t add record

C = Conditional, add scheduler
record only if build succeeds.

<applName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> &
<packageld>.

<cmnSubSystemld> Optional 1 String (1) ZMF subsystem ID where package
resides (for batch execution).

<package> Required 1 String (10), Fixed-format ZMF package name.
fixed

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.

<requestor> Optional 1 String (8), Must be valid TSO user ID on
variable mainframe LPAR where ZMF
subsystem resides.

PACKAGE SERVICE SUBMIT Replies

No <result> data structure is returned in the reply message to a package submit request.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

70

ChangeMan® ZMF XML Services User's Guide

Check a Package for Promotion Readiness - PACKAGE CHECK
PROMOTE

The promotion check function determines whether a promote request is valid without
performing the actual promotion. It ensures that the components to be promoted are active,
the requested promotion library is a valid one for the requestor, and the package complies
with administrator-defined promotion business rules.

The Serena XML service/scope/message tags for a promotion check message are:

<service name="PACKAGE”>
<scope name="CHECK”>
<message name="PROMOTE”>

These tags appear in both requests and replies.

PACKAGE CHECK PROMOTE Requests

The syntax of a promotion check message is similar to that of the PACKAGE SERVICE
PROMOTE request, with the following exceptions:

+ the name attribute in the <scope> tag has a value of “CHECK”

+ the <applName>, <packagelId>, <scheduledate>, and <scheduletime> tags are
not used

A code example appears in this chapter under Promote a Package - PACKAGE SERVICE
PROMOTE. Data structure details for the promotion check <request> tag are discussed in
Exhibit 3-8.

PACKAGE CHECK PROMOTE Replies

No <result> data structure is returned in the reply message to a promotion check request.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Promote a Package - PACKAGE SERVICE PROMOTE

Package promotion applies the changes in a package to libraries used for testing and other
purposes. All components to be promoted must be active, and business rules for promotion
level transitions, promotion to remote sites, and package freeze must also be met.

The Serena XML service/scope/message tags for a package promotion message are:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="PROMOTE”>

These tags appear in both requests and replies.

71

Chapter 3: Package Management

72

The package promote function validates the promotion readiness of a package prior to
executing the promote. It necessarily file-tailors the package for application to the target
promotion library, as well — a step that can take some time.

i

iy
S

Tip

To check the promotion readiness of a package in Serena XML without file
tailoring for promotion or actually executing the promote, use package/check/
promote. (See Check a Package for Promotion Readiness - PACKAGE CHECK
PROMOTE.)

PACKAGE SERVICE PROMOTE Request

Serena XML supports all three types of promotion: full promote, selective promote, and “first
promote. No special XML attribute or tag is required to choose a promotion type.
ChangeMan ZMF determines the appropriate promotion type based on whether or not you
supply an explicit component name (which indicates a selective promote), and on the
business rules defined for promotion by your administrator (which may or may not allow a
“first” promote).

The example below shows how you might code a selective promotion request in Serena
XML. Data structure details for the packageservice promote <request> tag appearin
Exhibit 3-8.

Example XML — PACKAGE SERVICE PROMOTE Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="PROMOTE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPO00012</package>
<promotionSiteName>SERT8</promotionSiteName>
<promotionLevel>10</promotionLevel>
<promotionName>COO@1AUT</promotionName>
<jobCards01>//XMLX130 JOB (AMW,000),'DEFINE UCAT',MSGCLASS=Y,</jobCards01>
<jobCards02>// TIME=(,10) ,NOTIFY=USER24</jobCards02>
</request>
</message>
</scope>
</service>

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-8. PACKAGE SERVICE PROMOTE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> &
<packageId>.
<component> Optional 0-800 | Complex See <component> subtag,
Exhibit 3-9.
NOTE: Required for selective
promote. If used,
<listCount> tagis also
required.
<jobCards01> Required 1 String (72), First of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards02> Optional 0-1 String (72), Second of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards03> Optional 0-1 String (72), Third of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards04> Optional 0-1 String (72), Fourth of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<listCount> Optional 0-1 Integer (3), Number of components to
variable selectively promote. Must match
number of <component> tags.
Value range: 1 - 800
NOTE: Required for selective
promote. If used,
<component> tagis also
required.
<overlayTargetComponents> Optional 0-1 String (1) Option to automatically overlay
package components already in
target library. Values:
Y = Yes, overlay components
N = No, don’t overlay
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed

73

Chapter 3: Package Management

Exhibit 3-8. PACKAGE SERVICE PROMOTE <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.
<promotionLevel> Required 1 Integer (2), Sequence number of target
variable promotion library in promotion
hierarchy.
<promotionName> Required 1 String (8), Promotion/demotion nickname.
variable
<promotionSiteName> Required 1 String (8), Name of site where target
variable promotion library resides.
<scheduledate> Optional 0-1 String (8) A date with no time (yyyyMMdd)
<scheduletime> Optional 0-1 String (4) Atime (HHmm)
<suppressNotify> Optional 0-1 String (1) Y = Yes, suppress notify
N = No, don’t suppress
<userVariable01> Optional 0-1 String (8), Up to five user-defined variables of
each variable 8 bytes each, used to pass
parameters to JCL interpreter.
<userVariable05>
<userVariable06> Optional 0-1 String (72), Up to five user-defined variables of
. each variable 72 bytes each, used to pass
parameters to JCL interpreter.
<userVariable10>

iy
S

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

<component> Subtag

In a selective or a “first” package promotion request, you explicitly name each component to
promote. The <component> subtag serves this purpose. It delimits a complex data structure
containing the name and library type of each component to be promoted, and is repeatable
as many times as needed to accommodate the components selected for promotion.

74

ChangeMan® ZMF XML Services User's Guide

This <component> tag does not stand alone. When used, it requires a <1istCount> tag to
precede the first instance of the <component> tag in the message. The <1istCount> tag
contains a count of components to be promoted. That number must match the actual number
of <component> tags that immediately follow.

Data structure details for the complex <component> subtag appear in Exhibit 3-9.

Exhibit 3-9. <component> Subtag Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentName> Required 1 String (256), | ¢ If PDS member, the member name (max
variable 8 bytes, no qualifiers).

« If HFS file, the Unix-style long file name,
optionally prefixed by path from installation
root.

<componentType> Required 1 String (3), Library type of component in
fixed <componentName>.

Package Service Promote Reply

No <result> data structure is returned in package promotion reply message. However, the
standard <response> data structure is returned to indicate the success or failure of the
promotion request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Lock Promotion Site for Package - PACKAGE PROMOTE LOCK

The Package Promote Lock service locks the promotion site for a requested package.
The Serena XML service/scope/message tags for a promotion site lock message are:

<service name="PACKAGE”>
<scope name="PROMOTE”>
<message name="LOCK”>

These tags appear in both requests and replies.

PACKAGE PROMOTE LOCK Request

The example below shows how you might code a Package Promote Lock request in Serena
XML. Data structure details for the <request> tag appear in Exhibit 3-10.

Example XML — PACKAGE PROMOTE LOCK Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PROMOTE">
<message name="LOCK">
<header>
<subsys>8</subsys>
<product>CMN</product>

75

Chapter 3: Package Management

</header>
<request>
<package>ACTPO00012</package>
<promotionSiteName>SERT8</promotionSiteName>
</request>
</message>
</scope>
</service>

Exhibit 3-10. PACKAGE PROMOTE LOCK <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacementfor <package> tag.
Use <package> instead of
<applName> &
<packageId>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.
<promotionSiteName> Required 1 String (8), Name of site where target
variable promotion library resides.

Package Promote Lock Reply

No <result> data structure is returned in a Package Promote Lock reply message.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Demote a Package - PACKAGE SERVICE DEMOTE

The standard package demotion function resets the desired components previously
promoted to a specific promotion site and level to promotion level 00 in the staging library. In
a full demote, it also resets the package master to development status. Copies of previously
promoted components are deleted.

76

ChangeMan® ZMF XML Services User's Guide

The Serena XML service/scope/message tags for a message to demote a package:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="DEMOTE”>

These tags appear in both requests and replies.

PACKAGE SERVICE DEMOTE Request

Serena XML supports both full demotion and selective demotion. No special XML attribute or
tag is required to choose a demotion type. ChangeMan ZMF determines the appropriate
demotion type based on whether or not you supply an explicit component name (which
indicates a selective demote).

Except for the name attribute in the <scope> tag, the syntax of a request to demote a
package is identical to that of a promotion request. A code example appears in this chapter
under Promote a Package - PACKAGE SERVICE PROMOTE. Data structure details for the
promotion check <request> tag are discussed in Exhibit 3-8, also in Promote a Package -
PACKAGE SERVICE PROMOTE.

PACKAGE SERVICE DEMOTE Reply

Serena XML reply messages for a package demotion request do not return a <result> data
structure. They do, however, return a standard <response> data structure to indicate the
success or failure of the demotion request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Demote a Package with Cleanup - PACKAGE CLEANUP DEMOTE

The package cleanup demote function performs a full package demotion for all package
components previously promoted to any promotion level at a named site. The promotion
libraries that were last promoted to are cleaned up. It then resets the package master to
development status.

The Serena XML service/scope/message tags for a message to demote a package with
cleanup are:

<service name="PACKAGE”>
<scope name="CLEANUP”>
<message name="DEMOTE”>

These tags appear in both requests and replies.

PACKAGE CLEANUP DEMOTE Requests

The example below shows how you might code a request for demotion with cleanup in
Serena XML. Data structure details for the <request> tag appear in Exhibit 3-11.

77

Chapter 3: Package Management

Example XML — PACKAGE CLEANUP DEMOTE Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="CLEANUP">
<message name="DEMOTE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000004</package>
<promotionSiteName>SERT8</promotionSiteName>
</request>
</message>
</scope>
</service>

Exhibit 3-11. PACKAGE CLEANUP DEMOTE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<applName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> &
<packageId>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.
<promotionSiteName> Required 1 String (8), Name of site where promotion
variable library resides.
<suppressNotify> Optional 0-1 String (1), Suppress batch messages,Y or N.

78

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-11. PACKAGE CLEANUP DEMOTE <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<userVariable01> Optional 0-1 String (8), Up to five user-defined variables of
each variable 8 bytes each, used to pass
parameters to JCL interpreter.
<userVariable05>
<userVariable06> Optional 0-1 String (72), Up to five user-defined variables of
each variable 72 bytes each, used to pass
parameters to JCL interpreter.
<userVariable10>

iy
S

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

PACKAGE CLEANUP DEMOTE Replies

Serena XML reply messages for a package demotion with cleanup do not returna <result>
data structure. They do, however, return a standard <response> data structure to indicate
the success or failure of the demotion request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Example XML — PACKAGE CLEANUP DEMOTE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="CLEANUP">
<message name="DEMOTE">
<response>
<statusMessage>CMN3261I - request submitted for demotion from
SERT8,CO01AUT.</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>3261</statusReasonCode>
</response>
</message>
</scope>
</service>

A successful PACKAGE CLEANUP DEMOTE request will generate a JOB with output similar
to the following:

79

Chapter 3: Package Management

80

-STEPNAME PROCSTEP RC EXCP CONN TCB SRB

-DEL1CPY 00 37 18 .00 .00
-SUCCESS 00 572 303 .00 .00
-CHKCOND 00 15 6 .00 .00
-FAILURE FLUSH 0 0 .00 .00
-PRINT 00 64 24 .00 .00
-CLNLCL 00 30 64 .00 .00
-SERT8 ENDED. NAME-ACTP TOTAL TCB

$HASP395 SERTS ENDED

DELETE ACPCPYQ0
ACPCPYQO WAS DELETED FROM TARGET DATA SET

%k 3k %k 3k %k 3k Xk Kk Kk Kk K K Kk K Kk Kk K K KKK kKkKkDNKDNKDNKDNXD*XD*KDNX*X*X*X*X*X*X*xX

* DDNAME: SUCCESS.SYSPRINT

%k 3k %k 3k %k 3k Xk Kk Kk Kk K K Kk K Kk Kk K K KKK kKkKkDNKDNKDNKDNXD*XD*KDNX*X*X*X*X*X*X*xX

ChangeMan (R) CMNBATCH - 6.1.0 2009/02/17 11:55:22
ATTEMPTING TO INITIATE DIALOG WITH CHANGE MAN SUBTASK
SESSION ESTABLISHED WITH CHANGE MAN SUBTASK

SYSIN: TES5000004 85 FUN=DEMOTE,NOD=SERTS8

SYSIN: TES5000004 85 LVL=10,LNM=COOLAUT,CID=USER24
SYSIN: TES5000004 85 SUP=YES,SSI=5C6A9D1F

SYSIN: TES5000004 85 TYP=CPY

SYSIN: TES5000004 85 CMP=ACPCPYO00

Component History has been updated.

Component Promotion History has been updated

Demotion logged TES5000004

SYSIN: TES5000004 85 FUN=END

Package Promotion history has been updated

Package TES5000004 DEMOTE

Package General record has been updated.

END OF DATA ON SYSIN - TERMINATING

SESSION TERMINATED WITH CHANGE MAN STARTED TASK

<SIZE: RECS=25 BYTES=967>

Approve a Package - PACKAGE SERVICE APPROVE

The package approval function logs package approval actions such “approve” and “reject”
and issues appropriate notifications. Approval entities may also override their previously
defined notification addresses (e.g., to substitute a TCP/IP email address for a TSO “Send”
message). Authorized approvers must be defined by approver list maintenance before they
can approve a package.

ChangeMan® ZMF XML Services User's Guide

Note

Approver list maintenance is a function of the approver maintenance service,
not the package management service. This task is normally performed via ISPF.

The Serena XML service/scope/message tags for a package approval message are:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="APPROVE”>

These tags appear in both requests and replies.

PACKAGE SERVICE APPROVE Requests

The following example shows how you might code a package approval request using Serena
XML. Data structure details for the package approval <request> tag appear in Exhibit 3-12.

Example XML — PACKAGE SERVICE APPROVE Request

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="APPROVE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<approverAction>1</approverAction>
<package>ACTPO0O0OOO9</package>
<approverEntity>ACTPLEAD</approverEntity>
<reasons>PACKAGE SERVICE APPROVE TEST</reasons>
</request>
</message>

81

Chapter 3: Package Management

</scope>
</service>

Exhibit 3-12. PACKAGE SERVICE APPROVE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> &
<packageld>.
<approverAction> Required 1 Integer (1), 1 = Approve package
fixed 2 = Checkoff
3 = Approval decision pending
4 = Reject package
5 = Under review
6 = Final approval for linked
packages
NOTE: If value is 2 or 4,
<reasons> tag required.
<approverEntity> Required 1 String (8), Security system entity ID of
variable authorized application approver.
<notifierAgentlpAddress> | Optional 0-1 String (32), Network IP address for E-mail
variable notifications. Overrides user record.
NOTE: If used, also requires
<notifierAgentPortid>
tag.
<notifierAgentPortid> Optional 0-1 Integer (5), Network port ID of E-mail server for
variable notifications. Overrides userrecord.
NOTE: Required with tag
<notifierAgentIpAddre
SS>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.

82

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-12. PACKAGE SERVICE APPROVE <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<reasons> Optional 0-14 | String (72), Reject (or checkoff) reasons. May
variable be repeated for multiple comments.

NOTE: If
<approverAction> value =
2 or 4, this tag is required.

PACKAGE SERVICE APPROVE Replies

Serena XML reply messages to a package approval request do not return a <result> data
structure. They do, however, return a standard <response> data structure to indicate the
success or failure of the approval action. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

List Package Installation Schedule - SCHEDULE SERVICE LIST

This function lists installation scheduler records defined for a named package. Information
returned includes planned installation dates, install job status if held or released, install job
participation in a multi-package release, temporary change duration, and package backout
status. If no installation information has been defined, no results are returned.

The Serena XML service/scope/message tags and attributes for messages that list
installation schedule information for a package are:

<service name="SCHEDULE”>
<scope name="SERVICE”>
<message name="LIST”>

These tags appear in both requests and replies.

SCHEDULE SERVICE LIST — Requests

Request messages for this function require only a package name. A date range may also be
supplied.

Example XML — SCHEDULE SERVICE LIST Request

<?xml version="1.0"?>
<service name="SCHEDULE">
<scope name="SERVICE">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPO0O0OOO9</package>

83

Chapter 3: Package Management

</request>
</message>
</scope>
</service>

Data structure details for the <request> tag appear in Exhibit 3-13.

Exhibit 3-13. SCHEDULE SERVICE LIST<request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<app/Name> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.
NOTE: Not recommended. Use
<package> instead of separately
specifying <app1Name > and
<packageld>.
NOTE: OK to omit trailing blanks.
<backoutJobSubmitted> Optional 1 String (1) Y = Yes, backout job submitted
N = Backout job not submitted
<installDate> Optional 0-1 Date, Planned install date for package, or start
yyyymmdd | date of range.
<installJobHeld> Optional 1 String (1) Y = Yes, install job held
N = No, install job not held
<installJobSubmitted> Optional 1 String (1) Y = Yes, install job submitted
N = No, install job not submitted
<isReasonslInserted> Optional 1 String (1) Y = Yes, reason codes present
N = No, reason codes absent
<package> Required 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID. Same as last 6 bytes
fixed of <package>.
NOTE: Not recommended. Use
<package> instead of separately
specifying <app1Name > and
<packageld>.
NOTE: Leading zeroes required.
<releaselnstallation> Optional 1 String (1) Y = Yes, install with release
N = No, not a release install
<tolnstallDate> Optional 0-1 Date, End date of planned installed date
yyyymmdd | range.
<type> Optional 0-1 1 Type of job scheduled, | = Install, P =
Promote

84

ChangeMan® ZMF XML Services User's Guide

SCHEDULE SERVICE LIST — Replies

The Serena XML reply message for this function returns one <result> tag, which contains
installation scheduler information for a named package. It is followed by the standard
<response> data element, which indicates the success or failure of the request. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.

Example XML — SCHEDULE SERVICE LIST Reply

<?xml version="1.0"7?>
<service name="SCHEDULE">
<scope name="SERVICE">
<message name="LIST">
<result>
<package>ACTPOOOOO9</package>
<applName>ACTP</applName>
<packageld>000009</packageld>
<type>I</type>
<installDate>20091231</installDate>
<installTime>0100</installTime>
<installJobSubmitted>Y</installJobSubmitted>
<installJobHeld>Y</installJobHeld>
<isReasonsInserted>Y</isReasonsInserted>
<backoutJobSubmitted>Y</backoutJobSubmitted>
<releaselnstallation>Y</releaselnstallation>
<tempChangeDuration>000</tempChangeDuration>
<updateToken>5C7529CB</updateToken>
</result>
<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Data structure details for the <result> tag appear in Exhibit 3-14.

Exhibit 3-14. SCHEDULE SERVICE LIST <result> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<app/Name> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.
<backoutJobSubmitted> Optional 1 String (1) Y = Yes, backout job submitted
N = Backout job not submitted

85

Chapter 3: Package Management

Exhibit 3-14. SCHEDULE SERVICE LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<installDate> Optional 0-1 Date, Planned installation date, or first date in
yyyymmdd | range of install dates.
<installJobHeld> Optional 1 String (1) Y = Yes, install job held
N = No, install job not held
<installJobSubmitted> Optional 1 String (1) Y = Yes, install job submitted
N = No, install job not submitted
<installTime> Optional 0-1 Time, Planned install time in 24-hour format.
hhmmss
<isReasonslInserted> Optional 1 String (1) Y = Yes, reason codes present
N = No, reason codes absent
<package> Optional 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID. Same as last 6 bytes
fixed of <package>.
<reasonCode> Optional 0-1 String (3), Reject reason code if package rejected
variable or backed out.
<releaselnstallation> Optional 1 String (1) Y = Yes, install with release
N = No, not a release install
<tempChangeDuration> Optional 0-1 String (3), Life of temporary change package
variable before automatic backout.
<type> Optional 0-1 1 Type of job scheduled, | = Install, P =
Promote
<updateToken> Optional 0-1 String (8), Binary hash token for updated
variable package.

Hold Package Install Job - SCHEDULE SERVICE HOLD

This function holds a package installation job in the scheduling queue until it is explicitly
released. The Serena XML service/scope/message tags and attributes for messages to hold
a package install job are:

<service name="SCHEDULE”>
<scope name="SERVICE”>
<message name="HOLD”>

These tags appear in both requests and replies.

SCHEDULE SERVICE HOLD — Requests

The request message for this function requires a package name. No filtering options are
supported. Data structure details for the <request> tag appear in Exhibit 3-15.

86

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-15. SCHEDULE SERVICE HOLD <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.

NOTE: Not recommended. Use
<package> instead of separately
specifying <app1Name> and
<packageld>.

NOTE: OK to omit trailing blanks.

<package> Required 1 String (10), | Fixed-format ZMF package name.
variable

<packageld> Optional 0-1 Integer (6), | ZMF package ID. Same as last 6 bytes
fixed of <package>.

NOTE: Not recommended. Use
<package> instead of separately
specifying <app1lName > and
<packageld>.

NOTE: Leading zeroes required.

<type> Optional 0-1 1 Type of job scheduled, | = Install, P =
Promote

SCHEDULE SERVICE HOLD — Replies

No <result> tagis returned in the Serena XML reply message for a package install job hold
request. However, the reply message does return a standard <response> data element to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Release Package Install Job - SCHEDULE SERVICE RELEASE

This function releases a previously held package installation job in the scheduling queue. The
Serena XML service/scope/message tags and attributes for messages to release a package
install job are:

<service name="SCHEDULE”>
<scope name=”"SERVICE”>
<message name="RELEASE”>

These tags appear in both requests and replies.

87

Chapter 3: Package Management

88

SCHEDULE SERVICE RELEASE — Requests

The request message syntax to release a package install job is different from that to hold an
install job only in the name attribute of the <message> tag, as shown above. Data structure
details for the <request> tag are identical in both messages. They appeared previously in

Exhibit 3-15.

SCHEDULE SERVICE RELEASE — Replies

No <result> tags are returned in the Serena XML reply message for a package install job
release request. However, the reply message does return a standard <response> data
element to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

Back Out a Package - PACKAGE SERVICE BACKOUT

The package service backout function reverses a package baseline ripple. Serena XML does
not back out changes to production libraries.

Note

If a package resides in remote production libraries as well as the baseline
library, you must back out each installed instance of the package from the
production libraries via the ISPF interface before you issue a Serena XML
backout request.

The Serena XML service/scope/message tags for a package backout message are:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="BACKOUT”>

These tags appear in both requests and replies.

PACKAGE SERVICE BACKOUT Requests

Serena XML allows you to back out a package with or without validating the integrity of your
baseline libraries afterward. This flexibility saves time when backing out minor or temporary

changes. However, unless you are completely certain that the changes to be backed out are
minor, you should validate baseline integrity as part of the backout process.

An example of how you might code a Serena XML request to back out a package from
baseline appears below. Data structure details for the package backout <request> tag
appear in Exhibit 3-16.

Example XML — PACKAGE SERVICE BACKOUT Request

<?xml version="1.0"” encoding="UTF-8"?>
<service name="PACKAGE">

ChangeMan® ZMF XML Services User's Guide

<scope name="SERVICE">
<message name="BACKOUT">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPOOOO1l2</package>
<siteName>SERT8</siteName>
<backoutReason®1l>TEST XML PACKAGE SERVICE BACKOUT</backoutReason01l>
<jobCards©1>//XMLX127 JOB (AMW,000), 'DEFINE UCAT',MSGCLASS=Y,</jobCards01>
<jobCards02>// TIME=(,10) ,NOTIFY=USER24</jobCards02>
</request>
</message>
</scope>
</service>

Exhibit 3-16. PACKAGE SERVICE BACKOUT <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> &
<packageld>.
backoutReason01 Optional 0-1 String (72), Backout reasons line - 1
variable
backoutReason02 Optional 0-1 String (72), Backout reasons line - 2
variable
backoutReason03 Optional 0-1 String (72), Backout reasons line - 3
variable
backoutReason04 Optional 0-1 String (72), Backout reasons line - 4
variable
backoutReason05 Optional 0-1 String (72), Backout reasons line - 5
variable
backoutReason06 Optional 0-1 String (72), Backout reasons line - 6
variable

89

Chapter 3: Package Management

Exhibit 3-16. PACKAGE SERVICE BACKOUT <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
backoutReason07 Optional 0-1 String (72), Backout reasons line - 7
variable
backoutReason08 Optional 0-1 String (72), Backout reasons line - 8
variable
backoutReason09 Optional 0-1 String (72), Backout reasons line - 9
variable
<jobCards01> Optional 0-1 String (72), First of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards02> Optional 0-1 String (72), Second of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards03> Optional 0-1 String (72), Third of up to 4 JCL statements
fixed length needed to execute the promote in
batch mode.
<jobCards04> Optional 0-1 String (72), Fourth of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.
<siteName> Optional 1 String (8), Name of site where target demotion
variable library resides.
<validateBackout> Optional 0-1 String (1) Y = Yes, validatebackout only.
N = No, perform backout.

PACKAGE SERVICE BACKOUT Replies

The Serena XML reply messages to a package backout request do not return a <result>
data structure. They do, however, return a standard <response> data structure to indicate
the success or failure of the revert request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

90

ChangeMan® ZMF XML Services User's Guide

Successful requests will send messages like the following to the user who initiated the
backout:

CMN406I - ACTP000012 BACKED OUT 2009/02/18 @ 08:36:08 AT SERT8, CN(INTERNAL)
CMN410I - ACTP000012 BASELINE REVERSE RIPPLED 2009/02/18 @ 08:36:08.
CN (INTERNAL)

Successful requests will submit a BACKOUT JOB with output similar to the following:

-STEPNAME PROCSTEP RC EXCP CONN TCB
-CMNeO 00 554 301 .00
-RESTCPY 00 133 245 .00
-DSPTM 00 611 323 .00
-RRIPPIA FLUSH 0 0 .00
-CMNeO 00 552 299 .00
-CMN99 00 14 5 .00
-FAILURE FLUSH 0 0 .00
-PRINT 00 33 16 .00
-ACTP5512 ENDED. NAME-ACTP T

$HASP395 ACTP5512 ENDED

//* IMS OPTION: JOB TO PERFORM REVERSE RIPPLE OF PACKAGE ACTP000012
ChangeMan(R) CMNBATCH - 6.1.0 2009/02/18 08:36:08

ATTEMPTING TO INITIATE DIALOG WITH CHANGE MAN SUBTASK

SESSION ESTABLISHED WITH CHANGE MAN SUBTASK

SYSIN: ACTPOOOG12 55 NOD=SERTS8

PACKAGE BACKED OUT AT DEV. ACTP0O00012
BACKOUT AT DEV LOGGED. ACTP0O00012
BASELINE REVERSE RIPPLE LOGGED ACTP0O00012

END OF DATA ON SYSIN - TERMINATING
SESSION TERMINATED WITH CHANGE MAN STARTED TASK

Revert a Package - PACKAGE SERVICE REVERT

The package revert function reverts a package to development status after it has been
backed out from baseline.

The Serena XML service/scope/message names for a package revert message are:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="REVERT”>

These tags appear in both requests and replies.

91

Chapter 3: Package Management

PACKAGE SERVICE REVERT Requests

You have the option to revert a package with or without concurrent validation of the staging
library. However, validation is recommended.

i

iy
S

Tip

To validate the staging library as part of your package revert request, enter “2” in
the <validationParm> tag.

The following example shows how you might code a package revert request using Serena
XML. Data structure details for the package revert <request> tag appear in Exhibit 3-17.

Example XML —PACKAGE SERVICE REVERT Request

<?xml version="1.0"
<service name="PACKAGE">
<scope name="SERVICE">
<message name="REVERT">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP0OO00O12</package>
<siteName>SERT8</siteName>
<revertReason®1>TEST XML PACKAGE SERVICE REVERT</revertReason01>
<jobCards01>//XMLX134 JOB (AMW,000),'DEFINE UCAT',MSGCLASS=Y,</
jobCards01>
<jobCards02>// TIME=(,10) ,NOTIFY=USER24</jobCards02>
</request>
</message>
</scope>
</service>

92

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-17. PACKAGE SERVICE REVERT <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> &
<packageld>.
<jobCards01> Optional 0-1 String (72), First of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards02> Optional 0-1 String (72), Second of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards03> Optional 0-1 String (72), Third of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards04> Optional 0-1 String (72), Fourth of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.
<revertReason01> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason02> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason03> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason04> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason05> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason06> Optional 1 String (72), Free format text of reason for
variable reverting package to development.

93

Chapter 3: Package Management

94

Exhibit 3-17. PACKAGE SERVICE REVERT <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<revertReason07> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason08> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason09> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<siteName> Required 1 String (8), Name of site where target revert
variable library resides.
<validationParm> Optional 0-1 Integer (1) 2 = Determine whether package is
eligible for revert. Revert is not
actually performed.

PACKAGE SERVICE REVERT Replies

Serena XML replies to a package revert request do not return a <result> data structure.
They do, however, return a standard <response> data structure to indicate the success or
failure of the revert request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

PACKAGE-LEVEL COMPONENT CHANGE MANAGEMENT

Package-level component change tasks apply to one or more components within a particular
change package. For example, you can work with the source and load components in a
package, the non-source components (such as copybooks) in a package, or scratch/rename
records in a package. Typical operations on components at the package level are list,
unfreeze and refreeze.

Package-level component change management tasks include:

Component Change Description List- * Unfreeze Non-Source Components - PACK-
CMPONENT CHG_DESC LIST AGE NON_SRC UNFREEZE

List Staged Components - CMPONENT * Refreeze Non-Source Components - PACK-
PKG_COMP LIST AGE NON_SRC REFREEZE

Component Description List- PACKAGE - List Scratch and Rename Utility Records -
CMP_DESC LIST CMPONENT PKG_UTIL LIST

List Components With Promotion Overlays < Unfreeze Scratch/Rename Records - PACK-
- PACKAGE PRM_OVLY LIST AGE SCR_REN UNFREEZE

Unfreeze Source/LL.oad Components - * Refreeze Scratch/Rename Records - PACK-
PACKAGE SRC_LOD UNFREEZE AGE SCR_REN REFREEZE

Refreeze Source/Load Components -
PACKAGE SRC _LOD REFREEZE

ChangeMan® ZMF XML Services User's Guide

Component Change Description List- CMPONENT CHG_DESC LIST

List all or any components in a package, together with their package-specific change
descriptions, using the Serena XML component change description list function. All
component types are included in the scope of this function, including source code members,
load members, copybooks, skeletons, ISPF panels, and JCL procedures.

The Serena XML service/scope/message names for a component change description list at
the package level are:

<service name="CMPONENT”>
<scope name="CHG_DESC”>
<message name="LIST”>

These tags appear in both requests and replies.

CMPONENT CHG_DESC LIST — Request
Three common uses for component change description lists in Serena XML are:

+ List All Components in Package — Name the desired package in the <package> tag.
Enter a “match-all” (asterisk) wildcard character in both the <component> and
<componentType> tags, or omit these tags altogether. All components in the package
will be returned, together with their package-level change descriptions.

» List All Components of Given Library Type — Name the desired package in the
<package> tag and the desired library type in the <componentType> tag. Enter a
“match-all” (asterisk) wildcard character in the <component> tag or omit it altogether. All
package components of the desired library type will be returned, together with their
change descriptions, if a change description exists.

* Get Package-Level Change Description for Named Component — Name the desired
package in the <package> tag and the desired component name in the <component>
tag. Enter the library type of the component in the <componentType> tag if known;
otherwise, enter a “match-all” (asterisk) wildcard character. The desired component and
its change description are returned if the component exists in the package.

The following example shows how you might code a request to list all components for
package ACTP000001 and any existing change descriptions using Serena XML. Data
structure details follow the example in Exhibit 3-18.

Example XML — CMPONENT CHG_DESC LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="CHG_DESC">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP0OOO0OO7</package>

95

Chapter 3: Package Management

96

</request>
</message>
</scope>
</service>

Exhibit 3-18. CMPONENT CHG_DESC LIST <request>

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacementfor <package> tag.
Use <package> instead of
<applName> &
<packageId>.
<component> Optional 0-1 String (256), | ZMF name of desired component.
variable + If component is PDS member,
this is member name (max
8 bytes, no qualifiers).
* If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.
Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.
<componentType> Optional 0-1 String (3), Library type for component.
variable Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.
<package> Required 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as
fixed last 6 bytes of package name.

NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.

CMPONENT CHG_DESC LIST — Reply

The XML reply to a component change description list request includes zero to many
<result> tags. Each <result> tag contains the name, library type, and change
description of a component in the named package if a change description exists.

ChangeMan® ZMF XML Services User's Guide

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>
tag also serves as an end-of-list marker.

An example XML reply to a component change description list request appears on the next
page. Data structure details for the <result> tag follow the example in Exhibit 3-19.

Example XML — CMPONENT CHG_DESC LIST Reply

<?xml version="1.0"7?>
<service name="CMPONENT">
<scope name="CHG_DESC">
<message name="LIST">

<result>
<package>ACTPOOOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<component>ACPCPY00</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>
</result>

<result>
<package>ACTPO0OOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<component>ACPCPY1A</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>
</result>

<result>
<package>ACTPOOOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<component>ACPCPY1B</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>
</result>

<result>
<package>ACTPO0OOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<component>ACPCPY1C</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>

</result>

<result>
<package>ACTPOOOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<component>ACPCPY1X</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>

97

Chapter 3: Package Management

</result>

<response>

<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>

</message>
</scope>
</service>

Exhibit 3-19. CMPONENT CHG_DESC LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first
fixed 4 bytes of package name.
<changeDesc> Optional 0-1 String (35), Description of changes in progress
variable with component in this package.
<component> Optional 0-1 String (256), | ZMF name of component.
variable + If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<componentType> Optional 0-1 String (3), Library type for component.
variable
<package> Optional 0-1 String (10), Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

List Staged Components - CMPONENT PKG_COMP LIST

List staged components for a package using the Serena XML function to list staged “source-
and-load” (ISAL and ICPY) components. These include “like-source”, “like-load”, “like-
copybook”, and “like-PDS” components staged from baseline or staged from development.

The Serena XML service/scope/message names for a staged component list at the package
level are:

<service name="CMPONENT”>

98

ChangeMan® ZMF XML Services User's Guide

<scope name="PKG_COMP”>
<message name="LIST”>

These tags appear in both requests and replies.

CMPONENT PKG_COMP LIST — Request
The primary uses for a request to list staged components are:

» List All Staged Components in a Package — Name the desired package in the
<package> tag. Submit a blank in <recordType> or omit this tag altogether.
Component name, library type, and status are returned for each staged component in the
named package.

+ List Staged Source and Load Components — Name the desired package in the
<package> tag. Enter an “A” in the <recordType> tag to request staged source-and-
load (ISAL) records. For each staged “like-source” and “like-load” component in the
package, this function returns the component name, library type, and status. If a staged
like-source component has been compiled while staged, its record will also include a
pointer to the primary “like-load” component generated by the compile. “Like-copybook”
and “like-PDS” components are not listed.

+ List Other Staged Components — Name the desired package in the <package> tag.
Enter a “6” in the <recordType> tag to request staged copy-and-include (ICPY) records.
The function lists component name, library type, and status information for all staged
“like-copybook” and “like-PDS” components in the named package, including copybooks,
skeletons, JCL procedures, and ISPF panels. Like-source and like-load components are
not listed.

* Verify That a Particular Component Was Staged — Supply the desired component
name in <component>, the component library type in <componentType>, and the
package name in <package>. Submit a blank in <recordType> or omit this tag
altogether. If the component was staged to the package named, a <result> data
structure will return information about the desired component. If the component was not
staged to that package, no results will be returned.

To further customize your query for a staged component list request, specify a library type,
modification date range, updater ID, or component status of interest. Choose component
status options using appropriate yes/no flag tags.

Note

Yes/no flags for component status filtering take default values as a group.

The default changes based on whether or not you enter explicit values in these

tags, as follows:

- If no status flag has an explicitly typed value, the default for all tags is “Y”.

- If any status flag has an explicitly typed value, the default for the remaining
tags is “N”.

Build-Option Reply Tags

The following build-option reply tags are not automatically retrieved:

99

Chapter 3: Package Management

100

<compileOptions>

<linkOptions>
<useDb2PreCompileOption>
<userOption01> thru <userOption20>
<userOption@101> thru <userOption@105>
<userOption0201> thru <userOption0203>
<userOption0301> thru <userOption0303>
<userOption0401> thru <userOption0403>
<userOption0801> thru <userOption0805>
<userOptionl@O1> thru <userOptionl002>
<userOptionl601> thru <userOptionl602>
<userOption3401> thru <userOption3402>
<userOption4401> thru <userOptiond4402>
<userOption6401> thru <userOption6405>
<userOption7201> thru <userOption7205>

Displaying these tags causes an increase in run time because the data must be retrieved
from the component history records. Therefore, these tags are not retrieved unless you
request them using the following tag:

e LS R LT e L S A

The default is “N” (do not retrieve the build-option tags).

The following example shows how you might code a request to list all source and load
components staged to a package. Data structure details for the <request> tag appear in
Exhibit 3-20.

Example XML — CMPONENT PKG_COMP LIST

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="PKG_COMP">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>CISQO00030</package>
</request>
</message>
</scope>
</service>

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-20. CMPONENT PKG_COMP LIST <request>

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.

NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageld>.

<component> Optional 1 String (256), | ZMF name of staged component.

variable « If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

« If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

Asterisk (*) wildcard is allowed.

<componentType> Optional 0-1 String (3), Library type of staged component.
variable NOTE: Takes asterisk (*) wildcard.

<filterActiveStatus> Optional 0-1 String (1) Y = Include active components
N = Omit active components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterCheckedOutStatus> Optional 0-1 String (1) Y = Include checked-out components
N = Omit checked-out components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, defaultis VY. If any tag in group
has explicit value, default is N.

<filterFrozenStatus> Optional 0-1 String (1) Y = Include frozen components
N = Omit frozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

101

Chapter 3: Package Management

Exhibit 3-20. CMPONENT PKG_COMP LIST <request> (Continued)

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<filterHfsDirectory>

Optional

0-1

String (256),
variable

Name of HFS directory containing
components to be listed, prefixed by
path from installation root (that is, path
as stored in baseline library). If present,
only files in this directory are listed. If
absent, all HFS files meeting other
criteria are listed.

NOTE: Applies to z/OS Unix HFS
components only. Irrelevant for native
z/OS PDS library members.

<filterInactiveStatus>

Optional

String (1)

Y = Include inactive components
N = Omit inactive components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterincompleteStatus>

Optional

String (1)

Y = Include incomplete components
N = Omit incomplete components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, defaultis Y. If any tag in group
has explicit value, default is N.

<filterUnfrozenStatus>

Optional

String (1)

Y = Include unfrozen components
N = Omit unfrozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<fromDateLastModified>

Optional

Date,
yyyymmdd

Start date in desired range of staged
component modification dates.

<lockld>

Optional

String (7)

UserlD component locked by (if
locked)

<longFormat>

Optional

String (1)

Tag for requesting the build-option tags
from component history data. The
default is N.

Y = Retrieve build-option tags

N = Do not retrieve build-option tags

<package>

Required

String (10),
fixed

Fixed-format ZMF package name.

<packageld>

Optional

Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageld>.

102

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-20. CMPONENT PKG_COMP LIST <request> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<recordType> Optional 0-1 String (1) Type of staged component record to list.

Values:

A = ISAL (like-source & like-load)
6 = ICPY (like-copybook, like-PDS)
Blank = Both record types

NOTE: Omit tag or enter explicit blank

to list both record types. Null tag returns

no records.

NOTE: Asterisk (*) wildcard not

accepted in this tag.

<targetComponent> Optional 0-1 String (256), | Name of a component, target member
variable name.

* If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<toDateLastModified> Optional 0-1 Date, End date in desired range of staged
yyyymmdd component modification dates.

<updater> Optional 0-1 String (8), TSO user ID of last person to update
variable staged component.

CMPONENT PKG_COMP LIST Replies

The Serena XML reply to a staged component list request returns zero to many <result>
data structures. Each <result> element lists one staged component, together with package
name and component status information. If a staged, like-source component has been
compiled after staging, the <result> also names its primary like-load target component.

In addition to any <result> data elements, the reply message returns a standard
<response> data structure to indicate the success or failure of the request. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.
Because the <response> tag follows the last <result> tag, it also serves as an end-of-list

marker.

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-21.

Example XML — CMPONENT PKG_COMP LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="PKG_COMP">
<message name="LIST">
<result>

103

Chapter 3: Package Management

104

<recordType>6</recordType>
<package>CISQO00030</package>
<applName>CISQ</applName>
<packageld>000030</packageld>
<component>CI2Q101</component>
<targetComponent>CI2Q101</targetComponent>
<componentType>LCT</componentType>
<datelLastModified>20081126</dateLastModified>
<timeLastModified>094237</timelLastModified>
<updater>USER24</updater>
<componentStatus>4</componentStatus>
<sourcelLibOrg>PDS</sourceLibOrg>
<sourceLib>CMNTP.SERT8.BASE.CISQ.LCT</sourceLib>
<chkOutLevel>00</chkOutLevel>
<version>01</version>
<modLevel>01</modLevel>
<hashToken>C647B43A0000001B</hashToken>
<baseDatelLastModified>20080407</baseDateLastModified>
<baseTimeLastModified>095500</baseTimeLastModified>
<dataType>1</dataType>
<chkOutToStageLib>N</chkOutToStageLib>
<chkOutFromBaseLib>N</chkOutFromBaselLib>
<chkOutToSernet>N</chkOutToSernet>
<batchChkOut>N</batchChkOut>
<chkOutComponentDesc>N</chkQutComponentDesc>
<chkOutFromRelease>N</chkOutFromRelease>
<lockComponent>Y</lockComponent>
<checkedOutHashToken>0000000000000000</checkedOutHashToken>
<lockId>USER@15</1lockId>

</result>

<response>

<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>

</message>
</scope>
</service>

Exhibit 3-21. CMPONENT PKG_COMP LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.
<baseDatelLastModified> Optional 0-1 Date, Date baseline version of staged
yyyymmdd component was last modified.

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<baseSetssi> Optional 0-1 String (8), Baseline component SETSSI date
fixed (seconds since 1/1/1960).
<baseTimelLastModified> Optional 0-1 Time, Time baseline version of staged
hhmmss component was last modified,
24 hr format.
<batchChkOut> Optional 0-1 String (1) Y = Batch checkout mode
N = Not batch checkout mode
<buildProc> Optional 0-1 String (8), Name of required build procedure used
variable with staged component.
NOTE: Applies only to source code
component in ISAL records.
<checkedOutHashToken> Optional 1 String (16), Component hash at checkout.
fixed
<chkOutComponentDesc> Optional 0-1 String (1) Y = Description checked out
N = Description not checked out
<chkOutFromBaselib> Optional 0-1 String (1) Y = Checked out from baseline
N = Not checked out from
baseline library
<chkOutFromRelease> Optional 1 String(1) Y = Checked out from release
N = Not checked out from release
<chkOutLevel> Optional 0-1 Integer (2) Checkout level number for staged
component.
<chkOutToSernet> Optional 0-1 String (1) Y = Checked out to SERNET
N = Not checked out to SERNET
<chkOutToStageLib> Optional 0-1 String (1) Y = Checked out to staging lib
N = Not checked out to staging
<compileOptions> Optional 0-1 String (34) Compile options for component not
stored elsewhere.
NOTE: Displayed only if <longFormat>
request tag = “Y”.
<component> Optional 1 String (256), | ZMF name of staged component.
variable

* If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

« If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

105

Chapter 3: Package Management

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentStatus> Optional 0-1 String (1) Code for staged component status.
Values:
0 = Active
1 = Approved
2 = Checked Out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote Promoted
B = Submitted
C = Unfrozen
<componentType> Optional 0-1 String (3), Library type of staged component.
fixed
<dataType> Optional 0-1 String (1) File type of staged component for data
transfers. Values:
1 =Text
2 = Binary
<datelLastModified> Optional 0-1 Date, Date staged component was last
yyyymmdd modified.
<encryption> Optional 0-1 String (8) Staged component encryption key.
<hashtoken> Optional 0-1 String (16), Hash token or “fingerprint” of staged
fixed component.
<language> Optional 0-1 String (8), Language name of component.
variable
<linkOptions> Optional 0-1 String (34) Link options for component not stored
elsewhere.

NOTE: Displayed only if <longFormat>

request tag = “Y”.

<lockComponent> Optional 0-1 String (1) Y = Component locked
N = Component not locked
<lockld> Optional 0-1 String (7) UserlD component locked by (if
locked)
<modLevel> Optional 0-1 String (2), ISPF modification level of staged
fixed component.
<package> Optional 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.

106

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<recordType> Optional 1 String (1) Type of staged component record listed.

Values:

A = ISAL (like-source & like-load)
6 = ICPY (like-copybook, like-PDS)
Blank = Both record types
<setssi> Optional 0-1 String (8), Staged component SETSSI date
fixed (seconds since 1/1/1960).
<sourcelLib> Optional 0-1 String (44), Data set name of staged component
variable library if PDS.
<sourceLibOrg> Optional 0-1 String (3), Data organization of staged component
fixed library. Values:
HFS = Hierarchical File System
Lib = Librarian
Pan = Panvalet
PDS = PDS or PDS/E
Seq = Sequential
Oth = Other
<targetComponent> Optional 0-1 String (256), | ZMF name of primary like-load
variable component generated from
<component> while staged.

* If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

* If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<targetLoadLibType> Optional 0-1 String (3), Library type of component named in
fixed <targetComponent>

(relink).

<timeLastModified> Optional 0-1 Time, Time staged component was last
hhmmss modified, 24 hr format.
<updater> Optional 0-1 String (8), TSO user ID of last person to update
variable staged component.
<useDb2PreCompileOption> | Optional 0-1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile for DB2
NOTE: Displayed only if <longFormat>
request tag = “Y”.
<userOption01> Optional 0-1 String (1) Set of up to 20 one-byte, custom,
administrator-defined variables. Values:
Y =Yes
: N = No
<userOption20>

NOTE: Displayed only if <longFormat>

w\/”

request tag = “Y”.

107

Chapter 3: Package Management

108

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<userOption0101>

<userOption0105>

Optional

0-1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>

request tag = “Y".

<userOption0201>

<userOption0203>

Optional

0-1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0301>

<userOption0303>

Optional

0-1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0401>

<userOption0403>

Optional

0-1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0801>

<userOption0805>

Optional

0-1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption1001>

<userOption1002>

Optional

0-1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<userOption1601>

<userOption1602>

Optional

0-1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption3401>

<userOption3402>

Optional

0-1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption4401>

<userOption4402>

Optional

0-1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>

”

request tag = “Y”.

<userOption6401>

<userOption6405>

Optional

0-1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption7201>

<userOption7205>

Optional

0-1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<utilType>

Optional

0-1

String (1),
fixed

Utility type - ‘C’ recompile, ‘L’ relink.

<version>

Optional

0-1

String (2),
fixed

ISPF version number of staged
component.

109

Chapter 3: Package Management

110

Component Description List- PACKAGE CMP_DESC LIST

List the component descriptions for specified components and types within a package using
the Serena XML “package component description list” function. All component types are
included in the scope of this function, including source code members, load members,
copybooks, skeletons, ISPF panels, and JCL procedures.

The Serena XML service/scope/message names for a component description list at the
package level are:

<service name="PACKAGE”>
<scope name="CMP_DESC”>
<message name="LIST”>

These tags appear in both requests and replies.

PACKAGE CMP_DESC LIST — Request
Three common uses for package component description lists in Serena XML are:

+ List All Components in Package — Name the desired package in the <package> tag.
Enter a “match-all” (asterisk) wildcard character in both the <component> and
<componentType> tags. All components in the package that have a description will be
returned.

+ List All Components of Given Library Type — Name the desired package in the
<package> tag and the desired library type in the <componentType> tag. Enter a
“‘match-all” (asterisk) wildcard character in the <component> tag. All package
components of the desired library type will be returned, together with their descriptions, if
a description exists.

» Get Description for Named Component — Name the desired package in the
<package> tag and the desired component name in the <component> tag. Enter the
library type of the component in the <componentType> tag if known; otherwise, enter a
“match-all” (asterisk) wildcard character. The desired component and its description are
returned if the component exists in the package and it has a description.

The following example shows how you might code a request to list the description for a
specific component in package ACTP000007. Data structure details follow the example in
Exhibit 3-22.

Example XML — PACKAGE CMP_DESC LIST Request

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="CMP_DESC">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>

ChangeMan® ZMF XML Services User's Guide

<package>ACTP0OOOOO7</package>
<component>ACPSRC1A</component>
<componentType>SRC</componentType>
</request>
</message>
</scope>
</service>

Exhibit 3-22. PACKAGE CMP_DESC LIST <request>

Data Type
Subtag Use Occurs | & Length Values & Dependencies

<applName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacementfor <package> tag.
Use <package> instead of
<applName> &
<packageId>.

<component> Required 1 String (256), | ZMF name of desired component.

variable + If component is PDS member,
this is member name (max
8 bytes, no qualifiers).

* If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.

Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.

<componentType> Required 1 String (3), Library type for component.

variable Wildcards & patterns with question

mark (?) & asterisk (*) are allowed.

<package> Required 1 String (10), | Fixed-format ZMF package name.
variable

<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.

111

Chapter 3: Package Management

PACKAGE CMP_DESC LIST — Reply

The XML reply to a package component description list request includes zero to many
<result> tags. Each <result> tag contains the name, library type, and description of a
component in the named package if a description exists.

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>
tag also serves as an end-of-list marker.

An example XML reply appears on the next page. Data structure details for the <result>
tag follow the example in Exhibit 3-23.

Example XML — PACKAGE CMP_DESC LIST Reply

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="CMP_DESC">
<message name="LIST">
<result>
<package>ACTPO0OOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<component>ACPCPY0O</component>
<componentDesc>ACCOUNT REC 00</componentDesc>
<componentType>CPY</componentType>
</result>
<result>
<package>ACTPOOOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<component>ACPCPY1A</component>
<componentDesc>ACCOUNT REC 1A</componentDesc>
<componentType>CPY</componentType>
</result>
<result>
<package>ACTPO0OOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<component>ACPCPY1B</component>
<componentDesc>ACCOUNT REC 1B</componentDesc>
<componentType>CPY</componentType>
</result>
<result>
<package>ACTPOOOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<component>ACPCPY1C</component>
<componentDesc>ACCOUNT REC 1C</componentDesc>
<componentType>CPY</componentType>
</result>

112

<response>

ChangeMan® ZMF XML Services User's Guide

<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>

</message>
</scope>
</service>

Exhibit 3-23. PACKAGE CMP_DESC LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
fixed 4 bytes of package name.
<component> Optional 0-1 String (256), | ZMF name of component.
variable » If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<componentDesc> Optional 0-48 | String (72), Component description.
variable
<componentType> Optional 0-1 String (3), Library type of component.
variable
<package> Optional 0-1 String (10), Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

List Components With Promotion Overlays - PACKAGE PRM_OVLY

LIST

If the promotion of a package would potentially cause some components to overwrite others

of the same name — for example, as part of another package already in testing — you can
know in advance using Serena XML. This function includes all component types and all
promotion libraries for the package in its scope.

The Serena XML service/scope/message tags for a message to list package components
with promotion overlays are:

<service name="PACKAGE”>

Chapter 3: Package Management

114

<scope name="PRM_OVLY”>
<message name="LIST”>

These tags appear in both requests and replies.

PACKAGE PRM_OVLY LIST — Requests
Serena XML supports two kinds of component overlay lists:

« All Components with Promotion Overlays — Name the desired package in the
<package> tag and specify the promotion level of interest using the
<promotionName>, <promotionLevel>, and <promotionSiteName> tags. Omit
the <componentNameAndType> tag. The function returns promotion overlay information
for all staged package components with duplicate component names and library types in
the chosen promotion environment.

* Promotion Overlays for Named Component(s) — Name the desired package in the
<package> tag and specify the promotion level of interest using the
<promotionName>, <promotionLevel>, and <promotionSiteName> tags. ltemize
the components to check for promotion overlays using the <componentNameAndType>
data element. A count of the itemized components is required in the <1istcount> tag.
The function returns overlay information only if an itemized component is duplicated in
the target promotion environment.

The following example shows how you might code a request to check a particular package
component for overlays in a named promotion library. Data structure details for the
<request> tag appear in Exhibit 3-24.

Example XML — PACKAGE PRM_OVLY LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PRM_OVLY">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPO0O0OO2</package>
<promotionSiteName>SERT8</promotionSiteName>
<promotionLevel>10</promotionLevel>
<promotionName>COO@1AUT</promotionName>
</request>
</message>
</scope>
</service>

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-24. PACKAGE PRM_OVLY LIST <request> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as replacement
for <package> tag. Use
<package> instead of
<applName> & <packageId>.
<componentNameAndType> | Optional 0-o00 | Complex Complex element identifies component(s)
to check selectively. See Exhibit 3-25.
NOTE: If used, <1listCount>
required.
NOTE: Omit tag to list all components in
package with promotion overlays.
<listCount> Optional 0-1 Integer (3), | Count of
variable <componentNameAndType> tags
included in request.
NOTE: If
<componentNameAndType>
used, this tag is required.
<package> Required 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as last 6
fixed bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
<promotionLevel> Required 1 Integer (2), | Numeric code of promotion level to check
variable for potential component overlays.
<promotionName> Required 1 String (8), ZMF name of promotion level to check for
variable potential component overlays.
<promotionSiteName> Required 1 String (8), ZMF name of promotion site to check for
variable potential component overlays.
<recallMigratedLib> Optional 0-1 String (1) Y = Yes, recall migrated shadow library

N = No, don’t recall shadow library

115

Chapter 3: Package Management

116

Note that <componentNameAndType> is a complex data element with subtags of its own.
Its data structure appears in Exhibit 3-25.

Exhibit 3-25. <componentNameAndType> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentName> Optional 0-1 String (256), | ZMF name of desired component.
variable » If component is PDS member,

this is member name (max
8 bytes, no qualifiers).

* If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-

tion root.
<componentType> Optional 0-1 String (3), Library type for component in
variable <componentName>.

PACKAGE PRM_OVLY LIST — Replies

The Serena XML reply to a component overlay list request returns zero to many <result>
data structures. Each <result> lists one component with potential component overlays in
the named promotion library, together with package and component promotion status.

A package component has potential overlay issues in the target promotion library if:

* A component with the same name and library type already exists in the target.
* A component with the same name and library type exists in the promotion history
records for the target.

If no duplicate components are found in either the target promotion library or its history
records, no results are returned by this function.

In addition to any <result> tags, the reply message returns a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher. Because the
<response> tag follows the last <result> tag, it also serves as an end-of-list marker.

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-26.

Example XML — PACKAGE PRM_OVLY LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PRM_OVLY">
<message name="LIST">
<result>
<component>ACPSRS00</component>
<componentType>SRS</componentType>
<isComponentRestaged>N</isComponentRestaged>

ChangeMan® ZMF XML Services User's Guide

<overlayStatus>C</overlayStatus>
<package>TES5000001</package>
<applName>TES5</applName>
<packageld>000001</packageld>
<promotionSiteName>SERT8</promotionSiteName>
<promotionLevel>10</promotionLevel>
<promotionName>COO@1AUT</promotionName>
<packageStatus>6</packageStatus>
<promoter>USER24</promoter>
<promotionDate>20090217</promotionDate>
<promotionTime>105054</promotionTime>
</result>

<response>
<statusMessage>CMN8700I - Overlay service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>

</message>

</scope>

</service>

Exhibit 3-26. PACKAGE PRM_OVLY LIST <result> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<applName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as

replacement for <package> tag. Use

<package> instead of
<applName> & <packageId>.
<component> Optional 1 String (256), | ZMF name of staged component.
variable » |f component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

* If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Optional 0-1 String (3), Library type of staged component.
fixed
<isComponentRestaged> Optional 0-1 String (1) Y = Yes, component is restaged
N = No, component not restaged

117

Chapter 3: Package Management

118

Exhibit 3-26. PACKAGE PRM_OVLY LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<overlayStatus> Optional 0-1 String (1) Code for overlay status of this
component in this promotion library.
Values:
N = Exists in promotion library but has
no history
H = Exists in promotion history but
not in promotion library
C = Common to both promotion library
and history
<package> Optional 0-1 String (10), Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as last 6
fixed bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageld>.
<packageStatus> Optional 1 String (1) Code for status of package in lifecycle.
Values:
1 = Approved
2 = Backed out
3 = Baselined
4 = Complex/super pkg closed
5 = Deleted (memo delete)
6 = Development
7 = Distributed
8 = Frozen
9 = Installed
A = Complex/super pkg open
B = Rejected
C = Temporary change cycle
completed
<promoter> Optional 0-1 String (8), TSO user ID of latest package promoter.
variable
<promotionDate> Optional 0-1 Date, Latest promotion date for package.
yyyymmdd
<promotionLevel> Optional 0-1 Integer (2), Numeric code of promotion level to check
variable for potential component overlays.
<promotionName> Optional 0-1 String (8), ZMF name of promotion level to check for
variable potential component overlays.
<promotionSiteName> Optional 0-1 String (8), ZMF name of promotion site to check for
variable potential component overlays.

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-26. PACKAGE PRM_OVLY LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<promotionTime> Optional 0-1 Time, Latest promotion time for package, 24-
hhmmss hour format.
<release> Optional 0-1 String (8), Name of release to which package is
(ERO only) variable attached.

Unfreeze Source/Load Components - PACKAGE SRC_LOD UNFREEZE

You can use Serena XML to unfreeze one or more “like-source” or “like-load” components in
a package. “Like-copybook” or “like-PDS” components such as copybooks, skeletons, JCL
procedures, or ISPF panels are not included in the scope of this function.

The Serena XML service/scope/message tags for a package-level unfreeze message for
source and load components are:

<service name="PACKAGE”>
<scope name="SRC_LOD”>
<message name="UNFREEZE”>

These tags appear in both requests and replies.

PACKAGE SRC_LOD UNFREEZE — Requests
Serena XML supports two types of unfreeze requests for source and load components:

» Full Unfreeze — Unfreezes all source and load component in the named package. This
is the default.

+ Selective Unfreeze — Unfreezes a subset of individually named source and/or load
components in the named package. Desired components are itemized by name and
library type in the <component> data element. A count of the itemized components to
unfreeze is required in the <listcount> tag.

The following example shows how you might code a full unfreeze request for all components
in a package. Data structure details for the <request> tag appear in Exhibit 3-27.

Example XML — PACKAGE SRC_LOD UNFREEZE Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SRC_LOD">
<message name="UNFREEZE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPOOOO13</package>

119

Chapter 3: Package Management

</request>
</message>
</scope>
</service>

Exhibit 3-27. PACKAGE SRC_LOD UNFREEZE <request>

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<applName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.

NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> &
<packageld>.

<component> Optional 0-800 | Complex Complex identifier for each
component to selectively unfreeze or
refreeze. See Exhibit 3-28.

NOTE: If used, <1istCount>
tag also required.

<listCount> Optional 0-1 Integer (3), Number of components to selectively
variable unfreeze or refreeze. Must match

number of <component> tags.
Value range: 1 - 800

NOTE: If <component> tag
used, this tag is required.

<package> Required 1 String (10), Fixed-format ZMF package name.
fixed

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.

120

ChangeMan® ZMF XML Services User's Guide

The <component> subtag represents a complex data structure that is frequently reused
among the package-level requests in Serena XML. Data structure details for this tag appear
in Exhibit 3-28 below.

Exhibit 3-28. <component> Subtag Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentName> Required 0-1 String (256), | ZMF component name.
variable + If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<componentType> Required 0-1 String (3), Library type of component in
fixed <componentName>.

PACKAGE SRC_LOD UNFREEZE — Replies

The Serena XML reply to a source and load component unfreeze request does not return a
<result> data structure. It does, however, return a standard <response> data structure to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Example XML — PACKAGE SRC_LOD UNFREEZE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SRC_LOD">
<message name="UNFREEZE">
<response>
<statusMessage>CMN8700I - UNFREEZE:SRC_LOD service completed</
statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Refreeze Source/Load Components - PACKAGE SRC_LOD REFREEZE

The inverse of the Serena XML unfreeze function for source and load components is the
refreeze function for these components. Like its inverse, the refreeze function applies to one

121

Chapter 3: Package Management

122

or more “like-source” or “like-load” components. Other components — copybooks, skeletons,
JCL procedures, ISPF panels, and the like — are not included in the scope of this function.

The Serena XML service/scope/message tags for a package-level refreeze message for
source and load components are:

<service name="PACKAGE”>
<scope name="SRC_LOD”>
<message name="REFREEZE”>

These tags appear in both requests and replies.

Refreeze Source and Load Components — Requests

As with unfreeze requests, Serena XML supports two types of package-level refreeze
requests for source and load components:

* Full Refreeze — Refreezes all source and load components in the named package. This
is the default.

+ Selective Refreeze — Refreezes a subset of individually named source and load
components in the named package. Desired components are itemized by name and
library type in the <component> data element. A count of the itemized components to
refreeze is required in the <1istcount> tag.

The <request> tag syntax for a source-and-load component refreeze request is identical to
that for an source-and-load component unfreeze request. (See Exhibit 3-27.) Only the name
parameter in the high-level <message> tag differs in this request, as shown above.

Example XML — PACKAGE SRC_LOD REFREEZE Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SRC_LOD">
<message name="REFREEZE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPOO0OO13</package>
</request>
</message>
</scope>
</service>

PACKAGE SRC_LOD REFREEZE — Replies

The Serena XML reply to a source-and-load component refreeze request does not return a
<result> data structure. It does, however, return a standard <response> data structure to

ChangeMan® ZMF XML Services User's Guide

indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Example XML — PACKAGE SRC_LOD REFREEZE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SRC_LOD">
<message name="REFREEZE">
<response>
<statusMessage>CMN8700I - REFREEZE:SRC_LOD service completed</
statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Unfreeze Non-Source Components - PACKAGE NON_SRC UNFREEZE

You can use Serena XML to unfreeze one or more “non-source” components in a package.
This unfreeze request includes in its scope all “like-load”, “like-copybook”, and “like-PDS”
component library types. “Like-source” components are excluded.

The Serena XML service/scope/message tags for a non-source component unfreeze
message are:

<service name="PACKAGE”>
<scope name="NON_SRC”>
<message name="UNFREEZE”>

These tags appear in both requests and replies.

PACKAGE NON_SRC UNFREEZE — Requests
Serena XML supports two types of unfreeze requests for non-source components:

* Full Unfreeze — Unfreezes all non-source components in the named package. This is
the default.

+ Selective Unfreeze — Unfreezes a subset of individually named non-source
components in the named package. Desired components are itemized by name and
library type in the <component> data element. A count of the itemized components to
unfreeze is required in the <listcount> tag.

The <request> tag syntax for a non-source component unfreeze request is identical to that
for a source-and-load component unfreeze request. (See Exhibit 3-27.) Only the name
parameter in the high-level <scope> tag differs in this request, as shown above.

123

Chapter 3: Package Management

124

PACKAGE NON_SRC UNFREEZE — Replies

The Serena XML replies to a unfreeze request for non-source components do not return a
<result> data structure. They do, however, return a standard <response> data structure
to indicate the success or failure of the request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher.

Refreeze Non-Source Components - PACKAGE NON_SRC REFREEZE

The inverse of the Serena XML unfreeze function for non-source components is the refreeze
function for these members. Like its inverse, the refreeze function applies to one or more
“non-source” components in a package, such as executable load modules, JCL procedures,
and copybooks. “Like-source” components are excluded. Scratch and rename utility records
are also outside the scope of this function.

The Serena XML service/scope/message tags for a non-source component refreeze
message are:

<service name="PACKAGE”>
<scope name="NON_SRC”>
<message name="REFREEZE”>

These tags appear in both requests and replies.

PACKAGE NON_SRC REFREEZE — Requests
Serena XML supports two types of refreeze requests for non-source components:

* Full Refreeze — Refreezes all non-source components in the named package. This is
the default.

+ Selective Refreeze — Refreezes a subset of individually named non-source components
in the named package. Desired components are itemized by name and library type in the
<component> data element. A count of the itemized components to refreeze is required
in the <listcount> tag.

The <request> tag syntax for a non-source component refreeze request is identical to that
for a non-source component unfreeze request. (See Exhibit 3-27.) Only the name parameter
in the high-level <message> tag differs in this request, as shown above.

Refreeze Non-Source Components — Replies

The Serena XML reply to a package-level refreeze request for non-source components does
not return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

ChangeMan® ZMF XML Services User's Guide

List Scratch and Rename Utility Records - CMPONENT PKG_UTIL LIST

Serena XML can list the scratch and rename utility requests for all components in a package.
The service/scope/message tags for this list message are:

<service name="CMPONENT”>
<scope name="PKG_UTIL”>
<message name="LIST”>

These tags appear in both requests and replies.

The service name is “cmponent”, not “package”, because XML Services calls the low-
level component service in ChangeMan ZMF to perform most tasks associated with this
function. The scope name, “pkg_util”, identifies this message as a package-level
component service.

Note

The spelling of “cmponent” in the service name attribute is condensed to
eight bytes for legacy compatibility on the mainframe.

CMPONENT PKG_UTIL LIST — Requests

Serena XML supports several uses for the scratch and rename request list. For example,
using appropriate selection criteria in your request, you can:

* Find Old Component Name From New Component Name — Name the desired
package in the <package> tag. Enter “8” in the <utilityType> tag to select rename
records. Enter the known, new component name (after rename) in the <newComponent>
tag. The function returns any rename records that match that new component name,
together with the old component name prior to the rename action.

* Find New Component Name from Old Component Name — Name the desired
package in the <package> tag. Enter “8” in the <utilityType> tag to select rename
records. Enter the known, old component name (before rename) in the <component>
tag. The function returns any rename records that match that old component name,
together with the new component name after the rename action.

* List All Scratched and Renamed Components — Name the desired package in the
<package> tag. Enter a blank in the <utilityType> tag or omit it entirely to request
both scratch and rename record types. A list of all components with scratch and rename
requests, including old and new component names, will be returned.

+ List All Scratched Components — Name the desired package in the <package> tag.
Enter “9” in the <utilityType> tag to request scratch records. The functions lists all
components in the package with outstanding scratch requests.

To further customize your list request, specify a library type, modification date range, updater
ID, or component status of interest. Choose component status options using appropriate
yes/no flag tags.

125

Chapter 3: Package Management

126

Note

Yes/no flags for component status filtering take default values as a group.
The default changes based on whether or not you enter explicit values in these
tags, as follows:

« If no status flag has an explicitly typed value, the default for all tags is “Y”.

- If any status flag has an explicitly typed value, the default for the remaining
tags is “N”.

The following example shows how you might code a request to list all renamed components
in a package using Serena XML. The example request includes only components that were
renamed while in unfrozen status; active, inactive, or frozen components are omitted.

Data structure details for the <request> tag appear in Exhibit 3-29.

Example XML — CMPONENT PKG_UTIL LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="PKG_UTIL">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000001</package>
</request>
</message>
</scope>
</service>

Exhibit 3-29. CMPONENT PKG_UTIL LIST <request>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.

NOTE: OK to omit trailing blanks.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

Exhibit 3-29. CMPONENT PKG_UTIL LIST <request> (Continued)

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<component>

Optional

0-1

String (256),
variable

Original component name before
scratch or rename operation.

* If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

« If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Takes asterisk (*) wildcard.

<componentType>

Optional

String (3),
fixed

Library type of component in
<componentName>.

<filterActiveStatus>

Optional

String (1)

Y = Include active components
N = Omit active components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, defaultis VY. If any tag in group
has explicit value, default is N.

<filterHfsDirectory>

Optional

String (256),
variable

Name of HFS directory containing
components to be listed, prefixed by
path from installation root (that is, path
as stored in baseline library). If present,
only files in this directory are listed. If
absent, all HFS files meeting other
criteria are listed.

NOTE: Applies to z/OS Unix HFS
components only. Irrelevant for native
z/OS PDS library members.

<filterInactiveStatus>

Optional

String (1)

Y = Include inactive components
N = Omit inactive components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterUnfrozenStatus>

Optional

String (1)

Y = Include unfrozen components
N = Omit unfrozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<fromDatelLastModified>

Optional

Date,
yyyymmdd

Start date in desired range of
component modification dates.

ChangeMan® ZMF XML Services User's Guide

127

Chapter 3: Package Management

Exhibit 3-29. CMPONENT PKG_UTIL LIST <request> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<newComponent> Optional 0-1 String (256), | New component name after rename
variable operation. Blank for scratch operation.

* If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

« If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Takes asterisk (*) wildcard.

<package> Required 1 String (10), Fixed-format ZMF package name.
fixed

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use

<package> instead of

<applName> & <packageld>.
<toDatelLastModified> Optional 0-1 Date, End date in desired range of component
yyyymmdd modification dates.
<updater> Optional 0-1 String (8), TSO user ID of last person to update
variable component.
<utility Type> Optional 0-1 String (1) Selects type of utility record to list.
Values:

8 = Rename record
9 = Scratch record
Blank = Both record types

NOTE: Omit tag or enter explicit blank
to list both record types. Null tag returns
no records.

NOTE: Asterisk (*) wildcard is not
accepted in this tag.

CMPONENT PKG_UTIL LIST — Replies

The Serena XML reply to this request returns zero to many <result> data structures, each
of which lists one component scratch or rename utility record for a package. Scratch records
report the names of components awaiting deletion, along with status information. Rename
records report old and new component names, along with status information for the original
component at the time it was renamed.

The reply message returns a standard <response> data structure to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. Because the <response> tag follows the last <result>
tag, it also serves as an end-of-list marker.

128

ChangeMan® ZMF XML Services User's Guide

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-30.

Example XML — CMPONENT PKG_UTIL LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="PKG_UTIL">
<message name="LIST">
<result>
<utilityType>9</utilityType>
<package>TES5000001</package>
<applName>TES5</applName>
<packageld>000001</packageld>
<componentType>CPY</componentType>
<updater>USER24</updater>
<dateLastModified>20090205</dateLastModified>
<timeLastModified>112910</timeLastModified>
<component>ACPCPY0Q0O</component>
<componentStatus>0</componentStatus>
<encryption>00000000</encryption>
</result>
<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 3-30. CMPONENT PKG_UTIL LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<applName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
<component> Optional 1 String (256), | Original ZMF name of scratched or
variable renamed component.

* If component is PDS member,
this is member name (max
8 bytes, no qualifiers).

* If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.

129

Chapter 3: Package Management

Exhibit 3-30. CMPONENT PKG_UTIL LIST <result> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentStatus> Optional 0-1 String (1) Code for original component status.
Values:
0 = Active
1 = Approved
2 = Checked Out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote Promoted
B = Submitted
C = Unfrozen
<componentType> Optional 1 String (3), Library type of scratched or
variable renamed component.
<dateLastModified> Optional 0-1 Date, Date original component was last
yyyymmdd modified.
<encryption> Optional 0-1 String (8), Component encryption number
variable
<newComponent> Optional 0-1 String (256), | New ZMF name of renamed
variable component.
<package> Optional 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
<timelLastModified> Optional 0-1 Time, Time original component was last
hhmmss modified, 24-hr format.
<updater> Optional 0-1 String (8), TSO user ID of last person to
variable update original component.
<utility Type> Optional 1 String (1) Code for type of component utility

record listed. Values:

8 = Rename record
9 = Scratch record

Unfreeze Scratch/Rename Records - PACKAGE SCR_REN UNFREEZE

Unfreeze requests for scratch and rename utility records (the so-called IUTL records)
selectively unlock these records so you can scratch and rename package components
without otherwise modifying component contents. An audit trail of such actions is maintained
in the IUTL records for later listing or impact analysis.

130

ChangeMan® ZMF XML Services User's Guide

The Serena XML service/scope/message tags for a scratch and rename utility records
unfreeze message are:

<service name="PACKAGE”>
<scope name="SCR_REN”>
<message name="UNFREEZE”>

These tags appear in both requests and replies.

PACKAGE SCR_REN UNFREEZE — Requests

Serena XML supports two types of unfreeze requests for scratch and rename utility records:

» Full Unfreeze — Unfreezes scratch and rename utility records for all components in the
named package. This is the default.

+ Selective Unfreeze — Unfreezes a subset of scratch and rename records for individually
named components in the named package. Desired components are itemized by name
and library type in the <component> data element. A count of the components to be
unfrozen for scratch or rename purposes is required in the <listcount> tag.

The <request> tag syntax for a scratch and rename unfreeze request is identical to that for
other component unfreeze requests. (See Exhibit 3-27.) Only the name parameter in the
high-level <scope> and <message> tags differ, as shown above.

PACKAGE SCR_REN UNFREEZE — Replies

The Serena XML reply to a scratch and rename unfreeze request does not return a
<result> data structure. It does, however, return a standard <response> data structure to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Refreeze Scratch/Rename Records - PACKAGE SCR_REN REFREEZE

The inverse of the Serena XML unfreeze function for scratch and rename records is the
refreeze function for these records. The refreeze function returns the scratch and rename
utility functions to their previously locked-down condition for frozen package components in
ChangeMan ZMF.

The Serena XML service/scope/message tags for a scratch and rename record refreeze
message are:

<service name="PACKAGE”>
<scope name="SCR_REN”>
<message name="REFREEZE”>

These tags appear in both requests and replies.

131

Chapter 3: Package Management

PACKAGE SCR_REN REFREEZE — Requests
Serena XML supports two types of refreeze requests for scratch and rename utility records:

* Full Refreeze — Refreezes scratch and rename records for all components in the named
package. This is the default.

+ Selective Unfreeze/Refreeze — Refreezes scratch and rename records for a subset of
individually named components in the named package. Desired components are itemized
by name and library type in the <component> data element. A count of the components
to be refrozen is required in the <1istcount> tag.

The <request> tag syntax for a scratch and rename refreeze request is identical to that for
other component refreeze requests. (See Exhibit 3-27.) Only the name parameter in the high-
level <scope> and <message> tags differ, as shown above.

PACKAGE SCR_REN REFREEZE — Replies

The Serena XML reply to a scratch and rename utility records refreeze request does not
return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

PACKAGE VALIDATION TASKS

132

Package validation tasks identify dependencies among package components, verify the
integrity of package components, or check for versioning differences and out-of-synch errors
across components in different stages of development. Typical commands include list, check,
and audit.

Serena XML supports the following package validation tasks:

» List Source-to-Load Dependencies - CMPONENT PKG_LOD LIST
* Check Component Integrity - PACKAGE CMPONENT INTEGRTY
» Audit a Package - PACKAGE SERVICE AUDIT

List Source-to-Load Dependencies - CMPONENT PKG _LOD LIST

Source-to-load relationship (ILOD) records track dependencies between “like-source”
components and any “like-load” or “like-other” components generated from a source
component by compilation, DB2 precompile, or similar transformation process. These are
the records returned by the Serena XML function listing source-to-load dependencies.

Not included in these source-to-load dependency records are “like-load” components staged
to development, but not generated from a “like-source” component while in staging. Also
omitted from the scope of this function are source-to-include relationships involving
copybooks, macros, subroutines, skeletons, ISPF panels, or JCL procedures.

The Serena XML service/scope/message tags for a source-to-load dependency list are:

<service name="CMPONENT”>
<scope name="PKG_LOD”>

ChangeMan® ZMF XML Services User's Guide

<message name="LIST”>
These tags appear in both request and reply messages.

The service name is “cmponent”, not “package”, because XML Services calls the low-
level component service in ChangeMan ZMF to perform most tasks associated with this
function. The scope name, “pkg_lod”, identifies this message as a package-level
component service.

Note

The spelling of “cmponent” in the service name attribute is condensed to
eight bytes for legacy compatibility on the mainframe.

CMPONENT PKG_LOD LIST — Requests
Serena XML supports the following options for source-to-load dependency lists:

+ All Dependencies in Package — Name the desired package in the <package>
package tag. The <component> and <targetComponent> tags should be omitted
from the request. The function returns all source-to-load dependencies involving “like-
load” components generated during the life of the named package.

* Load Dependencies for a Source Component — Name the desired package in the
<package> tag and the desired “like-source” component in the <component> tag.
Include the library type for the like-source component in <componentType>. Omit the
<targetComponent> tag from the request. The function lists all “like-load” components
affiliated with the named like-source component.

» Source Dependencies for a Load Component — Name the desired package in the
<package> tag and the desired “like-load” component in the <targetComponent> tag.
Include the library type for the like-load component in <targetComponentType>. Omit
the <component> tag from the request. The function lists all “like-source” components
affiliated with the named like-load component.

To further customize your request, specify a library type, modification date range, updater ID,
or component status of interest. Choose component status options using appropriate
yes/no flag tags.

Note

Yes/no flags for component status filtering take default values as a group.

The default changes based on whether or not you enter explicit values in these

tags, as follows:

- If no status flag has an explicitly typed value, the default for all tags is “Y”.

- If any status flag has an explicitly typed value, the default for the remaining
tags is “N”.

The following example shows how you might code a request to list all “like-load”
dependencies for a given “like-source” component in a package.

133

Chapter 3: Package Management

Example XML — CMPONENT PKG_LOD LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="PKG_LOD">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>CISQO00030</package>
</request>
</message>
</scope>
</service>

Data structure details for the <request> tag appear in Exhibit 3-31.

Exhibit 3-31. CMPONENT PKG_LOD LIST <request>

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<appIName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.

NOTE: OK to omit trailing blanks.
NOTE: Not recommended to replace
<package>. Use <package>
instead of <applName> &
<packageld>.

<component> Optional 0-1 String (256), | Name of “like-source” component for
variable which “like-load” dependencies are
wanted.

* If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

« If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Optional 0-1 String (3), Library type of “like-source” component
variable for which “like-load” dependencies are
wanted.

NOTE: Omit to include all.

134

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-31. CMPONENT PKG_LOD LIST <request> (Continued)

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<filterActiveStatus>

Optional

0-1

String (1)

Y = Include active components
N = Omit active components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterFrozenStatus>

Optional

String (1)

Y = Include frozen components
N = Omit frozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, defaultis VY. If any tag in group
has explicit value, default is N.

<filterHfsDirectory>

Optional

String (256),
variable

Name of HFS directory containing
components to be listed, prefixed by
path from installation root (that is, path
as stored in baseline library). If present,
only files in this directory are listed. If
absent, all HFS files meeting other
criteria are listed.

NOTE: Applies to z/OS Unix HFS
components only. Irrelevant for native
z/OS PDS library members.

<filterUnfrozenStatus>

Optional

String (1)

Y = Include unfrozen components
N = Omit unfrozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, defaultis Y. If any tag in group
has explicit value, default is N.

<fromdateLastModified>

Optional

Date,
yyyymmdd

Start date in desired range of
component modification dates.

<package>

Required

String (10),
fixed

Fixed-format ZMF package name.

<packageld>

Optional

Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

135

Chapter 3: Package Management

Exhibit 3-31. CMPONENT PKG_LOD LIST <request> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<targetComponent> Optional 0-1 String (256), | Name of “like-load” component for
variable which “like-source” dependencies are
wanted.

* If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Omit to include all.

<targetComponentType> Optional 0-1 String (3), Library type of “like-load” component.
variable

<toDatelLastModified> Optional 0-1 Date, End date in desired range of component
yyyymmdd modification dates.

<updater> Optional 0-1 String (8), TSO user ID of last person to update
variable component.

CMPONENT PKG_LOD LIST — Replies

The Serena XML source-to-load dependency list returns zero to many <result> data
structures, each of which lists one source-to-load relationship for a package. Status
information for the “like-source” component in the pair is also returned. If no compilations,
submissions for JCL install job build, or other transformation processes have occurred for
components in the package, no <result> tags are returned.

The reply message returns a standard <response> data structure to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. Because the <response> tag follows the last <result>
tag, it also serves as an end-of-list marker.

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-32.

Example XML — CMPONENT PKG_LOD LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="PKG_LOD">
<message name="LIST">
<result>
<package>CISQO00030</package>
<applName>CISQ</applName>
<packageld>000030</packageld>
<component>APPSTATS</component>
<componentType>SRS</componentType>
<targetComponent>APPSTATS</targetComponent>

136

ChangeMan® ZMF XML Services User's Guide

<targetComponentType>DBR</targetComponentType>
<updater>USER24</updater>
<datelLastModified>20081126</dateLastModified>
<timeLastModified>094711</timeLastModified>
<setssi>5BFD1269</setssi>
<componentStatus>4</componentStatus>
<rebuildFromBaseline>N</rebuildFromBaseline>

</result>

<result>
<package>CISQO00030</package>
<applName>CISQ</applName>
<packageld>000030</packageld>
<component>APPSTATS</component>
<componentType>SRS</componentType>
<targetComponent>APPSTATS</targetComponent>
<targetComponentType>L0S</targetComponentType>
<updater>USER24</updater>
<datelLastModified>20081126</dateLastModified>
<timeLastModified>094711</timelLastModified>
<setssi>5BFD1269</setssi>
<componentStatus>4</componentStatus>
<rebuildFromBaseline>N</rebuildFromBaseline>

</result>

<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>

<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>
</message>

</scope>
</service>

Exhibit 3-32. CMPONENT PKG_LOD LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first 4
fixed bytes of package name.
<component> Optional 0-1 String (256), | Name of “like-source” component.
variable « If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

137

Chapter 3: Package Management

Exhibit 3-32. CMPONENT PKG_LOD LIST <result> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentStatus> Optional 0-1 String (1) Code for original component status.
Values:
0 = Active
1 = Approved
2 = Checked Out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote Promoted
B = Submitted
C = Unfrozen
<componentType> Optional 0-1 String (3), Library type of “like-source” component.
variable
<datelLastModified> Optional 0-1 Date, Date source component was last
yyyymmdd modified.
<hashToken> Optional 0-1 String (16), Hash token for HFS.
variable
<package> Optional 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.
<rebuildFromBaseline> Optional 0-1 String (1) Y = Recompile/relink from baseline,
not package component
N = Recompile/relink from package
component, not baseline
<setssi> Optional 0-1 String (8), Staged component SETSSI date
fixed (seconds since 1/1/1960).
<targetComponent> Optional 0-1 String (256), | Name of “like-load” component
variable generated from “like-source”
component.
<targetComponentType> Optional 0-1 String (3), Library type of “like-load” component.
variable
<timeLastModified> Optional 0-1 Time, Time source component was last
hhmmss modified, 24-hr format.
<updater> Optional 0-1 String (8), TSO user ID of last person to update
variable source component.

138

ChangeMan® ZMF XML Services User's Guide

Check Component Integrity - PACKAGE CMPONENT INTEGRTY

The package-level component integrity check verifies that all package component records in
the package master database have corresponding physical components in the staging
libraries, and vice versa. A component integrity check can be made only against simple or
participating packages.

i

iy
S

Tip

To verify that all independently queued batch jobs have completed in
ChangeMan ZMF before a dependent job step executes, use the Serena XML
component integrity check.

The Serena XML service/scope/message tags for a package-level component integrity check
message are:

<service name="PACKAGE”>
<scope name="CMPONENT”>
<message name="INTEGRTY”>

These tags appear in both request and reply messages.

PACKAGE CMPONENT INTEGRTY Requests

The following example shows how you might code a Serena XML request for a package-level
component integrity check.

Example XML — PACKAGE CMPONENT INTEGRTY Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="CMPONENT">
<message name="INTEGRTY">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>IMSQO00012</package>
</request>
</message>
</scope>
</service>

139

Chapter 3: Package Management

140

Data structure details for the package cmponent integrity check <request> tag appear in
Exhibit 3-33.

Exhibit 3-33. PACKAGE CMPONENT INTEGRTY <request>

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended to replace
<package>.Use <package>
instead of <app1Name> &
<packageld>.
<package> Required 1 String (10), | Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as last
variable 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packagelId>.
<processLstStagingLibs> | Optional 0-1 String (1) Option to include listings (library type
LST) in check. Values:
Y = Yes, include listing libraries
N = No, omit listing libraries

PACKAGE CMPONENT INTEGRTY Replies

The Serena XML reply message to a package-level request to check component integrity
returns zero to many <result> tags. Each <result> tag contains information about a
package component that failed the component integrity check. If all components pass the
check, no <result> tag is returned.

A standard <response> data structure always follows the <result> tags, if any, to indicate
the overall success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

An example of a Serena XML reply to a component integrity check reply message follows. In
this example, multiple package components fail the integrity check. No other errors occur.
Data structure details for the component integrity check <result> appear in Exhibit 3-34.

Note that the <component> subtag of the component integrity check <result> tag
represents a simple data element containing the component name only. It differs from the
<component> tag used in the selective package promote and demote messages, in
selective unfreeze and refreeze messages, and others where <component > is a complex
data element containing subtags of its own. Serena XML distinguishes the two by
service/scope/message context.

ChangeMan® ZMF XML Services User's Guide

Example XML — PACKAGE CMPONENT INTEGRTY Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="CMPONENT">
<message name="INTEGRTY">
<response>
<statusMessage>CMN8700I - Package Integrity service completed</
statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 3-34. PACKAGE CMPONENT INTEGRTY <result>

Data Type
Subtag Use Occurs & Length Values & Dependencies
<componentName> Optional 0-1 String (256), | ZMF component name.
variable » If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Optional 0-1 String (3), Must be valid ZMF library type.
variable

<message> Optional 0-1 String (255), | Component integrity error message for
variable named component.

Audit a Package - PACKAGE SERVICE AUDIT

The package audit function checks for out-of-synch conditions in package components. The
package(s) to be audited must be in development status, with all components at promotion
level 00, prior to running the audit request. The outcome of the audit is an audit report, which
the package audit function spools to your system’s output utility (e.g., Spool Display and
Search Facility, or SDSF) for later interactive access and printing.

The Serena XML service/scope/message tags for a package audit message are:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="AUDIT”>

These tags appear in both requests and replies.

141

Chapter 3: Package Management

142

PACKAGE SERVICE AUDIT Requests

Serena XML supports package audit options of narrow to broad scope. A set of yes/no audit
flag tags lets you tailor the scope of your audit to the following:

Staging Libraries Only, No Cross-Package Dependencies — Performs an audit
against staging libraries but not baseline libraries for a simple package. To select this
option, set the <auditLite> tag flag to “Y”.

Staging and Baseline Libraries, No Cross-Package Dependencies — Performs an
audit against both staging and baseline libraries for a simple package. To select this
option, set the <auditLite> tag flag to “N”.

Staging Libraries Only, Check Cross-Package Dependencies — Performs an audit
against staging libraries for non-baselined participating packages in a complex package.
To select this option for a participating package, set the <auditPartAsPrimary> tag
flag to “Y”. To select this option for a complex package, set the <auditLite> tag flag
to “Y”.

Staging and Baseline Libraries, Check Cross-Package Dependencies — Performs
an audit against staging libraries and baseline libraries for all participating packages in a
complex package. To select this option, enter the name of the complex package in the
<package> tag and set the <auditLite> tag flag to “N”.

Cross-Application Audit — Performs an audit against both staging and baseline
libraries for all applications identified in the request message. Cross-application
dependencies are audited across applications defined in the package master for complex
packages and participating packages not otherwise excluded from this option. You can
also request that cross-application dependencies be checked for the applications you
name. To do this, list the desired applications using the repeating <scopeApp1> tag and
provide the number of those applications in <1istCount>.

The following example shows how you might code a package audit request using Serena
XML. Data structure details for the package audit <request> tag appear in Exhibit 3-35.

Example XML — PACKAGE SERVICE AUDIT Request

<?xml version="1.0"?>
<service name="PACKAGE">

<scope name="SERVICE">
<message name="AUDIT">

<header>
<subsys>8</subsys>
<product>CMN</product>
</header>

<request>

<package>ACTPOOOO13</package>

<jobCards@1>//XMLX126 JOB (AMW,000), 'DEFINE UCAT',LMSGCLASS=Y,</jobCards01>
<jobCards02>// TIME=(,10) ,NOTIFY=USER24</jobCards02>

</request>

</message>

ChangeMan® ZMF XML Services User's Guide

</scope>
</service>

Exhibit 3-35. PACKAGE SERVICE AUDIT <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.

NOTE: OK to omit trailing blanks.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.

<auditAutoParms> Optional 0-1 String (44), The name of a data set containing
variable the auto resolve parameters. See
the ChangeMan ZMF User’s Guide,
Using Auto Resolve.

<auditAutoResolve> Optional 0-1 String (1) Option to automatically resolve
out-of-synch conditions. Values:

Y = Yes, turn on auto-resolve
N = No, don’t auto-resolve errors

<auditFormatReport> Optional 0-1 String (1) Option to include printer control
characters in output file. Values:

Y = Yes, include control chars
N = No, don’t use control chars

<auditIncludeHistory> Optional 0-1 String (1) Option to include component history
in audit report. Values:

Y = Yes, include history
N = No, omit history

<auditLite> Optional 0-1 String (1) Option to omit baseline libraries from
audit. Values:

Y = Yes, omit baseline libraries
N = No, don’t omit baseline libs

<auditPartAsPrimary> Optional 0-1 String (1) Option to include cross-package
dependencies for all but previously
installed packages from audit of
participating package. Values:

Y = Yes, audit as primary pkg

N = No, don’t change audit scope

143

Chapter 3: Package Management

Exhibit 3-35. PACKAGE SERVICE AUDIT <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<auditPartAsSimple> Optional 0-1 String (1) Option to omit cross-package
dependencies from audit of a
participating package & follow rules
for simple packages concerning
baseline libraries. Values:
Y = Yes, audit as simple package
N = No, don’t change audit scope

<auditPartByDept> Optional 0-1 String (1) Option to limit cross-package
dependency check to department of
target package. Values:

Y = Yes, audit within department
N = No, don’t change audit scope

<auditRCUpdateRestrictToTarget> | Optional 0-1 String (1) Option for cross-package & cross-
application audits to update audit
return code only in the package
named in <package> tag, rather
than all packages audited. Values:
Y = Yes, restrict audit return code
N = No, don't restrict return code

<auditTraceOption> Optional 0-1 String (1) Option to turn on trace option for
audit function. Values:
Y = Yes, turn on trace option
N = No, don't trace audit job

<includeXAPheaders> Optional 0-1 String (1) Include cross application common
baseline headers:

Y = Yes

N = No

<jobCard01> Optional 0-1 String (72), First of up to 4 JCL statements
fixed length | needed to execute the audit in batch
mode.

<jobCard02> Optional 0-1 String (72), Second of up to 4 JCL statements
fixed length needed to execute the audit in batch
mode.

<jobCard03> Optional 0-1 String (72), Third of up to 4 JCL statements
fixed length | needed to execute the audit in batch
mode.

<jobCard04> Optional 0-1 String (72), Fourth of up to 4 JCL statements
fixed length | needed to execute the audit in batch
mode.

<listCount> Optional 0-1 Integer (3), Count of <scopeApp1> tags to
variable include in cross-application audit.
NOTE: Required if value is Y in
<auditCrossApplication
> tag.

144

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-35. PACKAGE SERVICE AUDIT <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<lockPackage> Optional 0-1 String (1) Lock package during audit.:
Y = Yes
N = No

<package> Required 1 String (10), Fixed-format ZMF package name.

fixed NOTE: May be simple, complex, or
participating.

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.

<scopeAppl> Optional 0-00 | Complex Name of application to include in
scope of cross-application audit.
Repeatable to accommodate
multiple applications.

NOTE: Required if value is Y in
<auditCrossApplication
> tag.

NOTE: If used, <1istCount>
tag also required.

<suppressNotify> Optional 0-1 String (1) Suppress Batch Messages:

Y = Yes
N = No

<userVariable01> Optional 0-1 String (8), Up to five user-defined variables of
each variable 8 bytes each, used to pass
parameters to JCL interpreter.

<userVariable05>

<userVariable06> Optional 0-1 String (72), Up to five user-defined variables of
each variable 72 bytes each, used to pass
parameters to JCL interpreter.

<userVariable10>

iy
Pt

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

145

Chapter 3: Package Management

PACKAGE SERVICE AUDIT Replies

Because the ZMF audit report is spooled to SDSF, Serena XML replies to a package audit
request do not return a <result> data structure. They do, however, return a standard
<response> data structure to indicate the success or failure of the audit request.

Example XML — PACKAGE SERVICE AUDIT Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="AUDIT">
<response>
<statusMessage>CMN2600OI - The job to audit this package has been
submitted.</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>2600</statusReasonCode>
</response>
</message>
</scope>
</service>

A job with output similar to the following is submitted:

//* JOB TO AUDIT PACKAGE ACTP000013
Legend and Summary Report

The local level of audit chosen at this point; 0
O - Audit 1is recommended but entirely optional
Out-of-synch messages (hint - search for "!" marks)

DUPLIC! (Staging duplicates baseline) ===> 9
SYNCHO! (Not 1in scope of audit or unknown) ===> 1
SYNCH1! (ISPF statistics not available) ===> 0
SYNCH2! (Compile/designhated proc differ) ===> 0
SYNCH3! (Unparsable load module) ===> 0
SYNCH4! (CPY problem in staging) ===> 0
SYNCH5! (CPY high-date problem in baseline)===> 17
SYNCH6! (Activity file not checked out) ===> 0
SYNCH7! (Called subroutine in staging) ===> 0
SYNCH8! (Called subroutine 1in baseline) ===> 0
SYNCH9! (Source and load discrepancy) ===> 0
SYNCH10! (Version regression problem) ===> 0
SYNCH11! (Component hash discrepancy) ===> 0
SYNCH12! (Orphan module in staging) ===> 0
SYNCH13! (Baseline/staging discrepancy) ===> 0
SYNCH14! (Components not 1in active status) ===> 0
SYNCH15! (Source to relationship problem) ===> 0
SYNCH16! (CPY low-date problem in baseline)===> 0
SYNCH17! (CPY deleted problem in staging) ===> 0
SYNCH18! (LOD deleted problem in staging) ===> 0

146

ChangeMan® ZMF XML Services User's Guide

Highest return code encountered ===> 8
CMN2678I - AUDIT RETURN CODE NOT UPDATED.

Serena XML audit return codes are the same as those for audits requested through the ISPF
interface. Successful audits — i.e. those that find no out-of-synch conditions — have a return
code of 00. Unsuccessful audit requests have a return code of 04 or higher.

PACKAGE INFORMATION MANAGEMENT TASKS

Package information management tasks retrieve or manage metadata and control
information for a package. Such information includes title and descriptions, general
parameters, user-defined package variables, install information, promotion history for the
package, promotion history for package components, and the like. Typical commands include
list, unfreeze, and refreeze.

Serena XML supports the follow information management tasks for packages:

* List Package Description - PACKAGE * List Package Implementation Instructions -
GEN_DESC LIST PACKAGE IMP_INST LIST

 List General Package Parameters - PACK- < List Package Approvers - APPROVER PKG
AGE GEN_PRMS LIST LIST

* Unfreeze Package Parameters - PACK- * Lijst Affected Applications - PACKAGE
AGE GEN_PRMS UNFREEZE AFF_APLS LIST

* Refreeze Package Parameters - PACK- * List Participating Packages - PACKAGE
AGE GEN_PRMS REFREEZE PRT_PKGS LIST

* List User-Defined Package Variables - * List Linked Packages - PACKAGE
PACKAGE USR_RECS LIST PKG_LINK LIST

* List Package Install Sites - SITE PKG LIST - List Package Library Types - LIBTYPE PKG

LIST

* Unfreeze Package Install Sites - PACK- * List Package Promotion History - PACKAGE
AGE SITES UNFREEZE PRM_HIST LIST

* Refreeze Package Install Sites - PACK- * Package Promoted Component List -
AGE SITES REFREEZE PACKAGE PRM_CMP LIST

* List Package Installation Dependencies - « List Reasons for Backout or Revert - PACK-
PACKAGE SCH_RECS LIST AGE REASONS LIST

147

Chapter 3: Package Management

148

List Package Description - PACKAGE GEN_DESC LIST

Serena XML lists the package description for one package. Multiple package descriptions
require multiple requests. Descriptions for baselined packages are accessible as long as the
package master record remains in the package database.

The Serena XML service/scope/message names for a package description list message are:

<service name="PACKAGE”>
<scope name="GEN_DESC”>
<message name="LIST”>

These tags appear in both request and reply messages.

PACKAGE GEN_DESC LIST — Requests

The package description list requires a package name as input. Wildcard characters are not
accepted in the <package> tag.

The following example shows how you might code a package description list request in
Serena XML. Data structure details for the <request> tag appear in the following exhibit.
This data structure is common to many package requests in Serena XML.

Example XML — PACKAGE GEN_DESC LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="GEN_DESC">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPOO00OO7</package>
</request>
</message>
</scope>
</service>

Exhibit 3-36.PACKAGE GEN_DESC LIST <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
fixed 4 bytes of package name.

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-36.PACKAGE GEN_DESC LIST <request> Data Structure (Continued)

Data Type &

Subtag Use Occurs | Length Values & Dependencies

<package> Required 1 String (10), Fixed-format ZMF package name.
fixed

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

PACKAGE GEN_DESC LIST — Replies

Replies to a package description list request return no more than one <result> tag. The
<result> contains zero to many package description entries for a single package.

The result is followed by a standard <response> tag that indicates the success or failure of
the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

An example XML reply message for the package description list follows. Data structure
details for <result> tag appear after the example, in Exhibit 3-37.

Example XML — PACKAGE GEN_DESC LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="GEN_DESC">
<message name="LIST">
<result>
<package>ACTPO0O0OOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<packageDesc>SER5904E</packageDesc>
</result>
<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

149

Chapter 3: Package Management

150

Exhibit 3-37. PACKAGE GEN_DESC LIST <result> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
fixed 4 bytes of package name.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageDesc> Optional 0-46 | String (72), General description of package
variable contents. Up to 46 lines of 72 bytes
each are allowed by ZMF.
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

List General Package Parameters - PACKAGE GEN_PRMS LIST

General parameters for a package include descriptive items entered during package creation

and update, as well as programmatically maintained status, audit trail, and release
information. The Serena XML function to list general package parameters retrieves this
information for any package master record, even after a package has been baselined.

User-defined package variables, package install information, and package approver lists
require other Serena XML functions for access.

The Serena XML service/scope/message names for a request to list general package
parameters are:

<service name="PACKAGE”>
<scope name="GEN_PRMS”>
<message name="LIST”>

These tags appear in both request and reply messages.

PACKAGE GEN_PRMS LIST — Request

The syntax for a request to list general package parameters is identical to that for many
package information management functions, including the package description list.

PACKAGE GEN_PRMS LIST — Replies

The Serena XML reply to a general package parameters list request contains one <result>

tag for the package named in the request.

A standard <response> tag follows the <result> to indicate the success or failure of the

request. Successful requests have a return code of 00. Unsuccessful requests have a return

code of 04 or higher.

An example reply message listing general package parameters appears below. Data
structure details for the <result> tag appear after the example in Exhibit 3-38.

ChangeMan® ZMF XML Services User's Guide

Example XML — PACKAGE GEN_PRMS LIST Reply

<?xml version="1.0"?>

<service name="PACKAGE">

<scope name="GEN_PRMS">

<message name="LIST">

<result>
<package>ACTPO0OOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<packagelLevel>1</packagelLevel>
<packageType>1</packageType>
<packageStatus>3</packageStatus>
<dateCreated>20090127</dateCreated>
<timeCreated>082516</timeCreated>
<dateFrozen>20090127</dateFrozen>
<timeFrozen>082824</timeFrozen>
<dateApproved>20090127</dateApproved>
<timeApproved>083154</timeApproved>
<dateSent>20090127</dateSent>
<timeSent>083210</timeSent>
<dateReceived>20090127</dateReceived>
<timeReceived>083238</timeReceived>
<datelnstalled>20090127</datelnstalled>
<timeInstalled>083537</timelnstalled>
<dateBaselined>20090127</dateBaselined>
<timeBaselined>083656</timeBaselined>
<requestorDept>IDD</requestorDept>
<requestorName>USER24</requestorName>
<requestorPhone>5555555</requestorPhone>
<workChangeRequest>USER24</workChangeRequest>
<packageTitle>SER5906E</packageTitle>
<creator>USER24</creator>
<lastPromotionAction>0</lastPromotionAction>
<schedulerType>2</schedulerType>
<isPostApprovalPending>N</isPostApprovalPending>
<isPostApproversAdded>N</isPostApproversAdded>
<isPostRejected>N</isPostRejected>
<isShortApproverListUsed>N</isShortApproverListUsed>
<tempChangeDuration>000</tempChangeDuration>
<isStageLibsDeleted>N</isStagelLibsDeleted>
<isLinkedPackage>N</isLinkedPackage>
<isCmnSchedulerUsed>N</isCmnSchedulerUsed>
<isManualSchedulerUsed>Y</isManualSchedulerUsed>
<isOtherSchedulerUsed>N</isOtherSchedulerUsed>
<isAuditPending>N</isAuditPending>
<isFreezePending>N</isFreezePending>
<isApprovalPending>N</isApprovalPending>
<isXNodeBuildRequired>N</isXNodeBuildRequired>
<isInstallPending>Y</isInstallPending>
<isRevertPending>N</isRevertPending>
<isReverseRippleSubmitted>N</isReverseRippleSubmitted>
<isBackedOut>N</1isBackedOut>

151

Chapter 3: Package Management

152

<isXNodeBuildPending>N</isXNodeBuildPending>
<generalComponentStatus>4</generalComponentStatus>
<nonSourceComponentStatus>4</nonSourceComponentStatus>
<sourcelLoadComponentStatus>4</sourceLoadComponentStatus>
<utilityInfoStatus>4</utilityInfoStatus>
<siteInfoStatus>4</siteInfoStatus>

<customComponentStatus>4</customComponentStatus>
<nearestInstallDate>20090127</nearestInstallDate>

<problemActionCode>2</problemActionCode>
<stageDevLibModel>CMNTP.SERT8.DEV.ACTP.#000007</stageDevLibModel>
<stageProdLibModel>CMNTP.SERT8.PRD.ACTP.#000007</stageProdLibModel>
<stagelLibStatus>2</stagelLibStatus>
<installTimeExpiration>0200</installTimeExpiration>
<packageCheckedIntoRelease>N</packageCheckedIntoRelease>

</result>
<response>

<statusMessage>CMN8700I - LIST
<statusReturnCode>00</statusReturnCode>

Package service completed</statusMessage>

<statusReasonCode>8700</statusReasonCode>

</response>
</message>
</scope>
</service>

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure

Data Type
Subtag Use Occurs | & Length | Values & Dependencies
<appIName> Optional 0-1 String (4), | ZMF application name. Same as
fixed first 4 bytes of package name.
<auditLockUserid> Optional 0-1 String (8), | Userid who locked package for
variable audit.
<auditReturnCode> Optional 0-1 String (2), | Return code issued by ZMF
variable package audit. Values:
00 = No major errors found
04 = Errors found
08 = Major errors found
12 = Possibly fatal errors found
<complexSuperPackage> Optional 0-1 String(10), | Name of complex/super package to
fixed which this participating package
belongs.
NOTE: Returned only if value of
<packagelLevel>=4.
<complexSuperPackageAppl> Optional 0-1 String (4), | Package application.
variable

NOTE: Returned only if value of
<packagelevel> =4

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length | Values & Dependencies
<complexSuperPackageNumber> | Optional 0-1 String (6), | Package number.
fixed NOTE: Returned only if value of
<packagelevel>=4
<creator> Optional 0-1 String (8), | TSO user ID of package creator.
variable
<customComponentStatus> Optional 0-1 String (1) Status code for custom
components of package as a
group. Values:
0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen
<dateApproved> Optional 0-1 Date (8), Date package approved.
yyyymmdd
<dateBaselined> Optional 0-1 Date (8), Date package baselined.
yyyymmdd
<dateBackedOut> Optional 0-1 Date (8), Date package backed out.
yyyymmdd
<dateCreated> Optional 0-1 Date (8), Date package created.
yyyymmdd
<dateFrozen> Optional 0-1 Date (8), Date package frozen.
yyyymmdd
<datelnstalled> Optional 0-1 Date (8), Date package installed.
yyyymmdd
<dateMemoDeleted> Optional 0-1 Date (8), Date package logically deleted.
yyyymmdd
<dateReceived> Optional 0-1 Date (8), Date package received.
yyyymmdd
<dateRejected> Optional 0-1 Date (8), Date package rejected.
yyyymmdd
<dateReverted> Optional 0-1 Date (8), Date package reverted.
yyyymmdd
<dateSent> Optional 0-1 Date (8), Date package sent.
yyyymmdd

153

Chapter 3: Package Management

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length | Values & Dependencies
<dateTempChangeCycled> Optional 0-1 Date (10), | Date when temporary change
yyyymmdd | package expired.
<generalComponentStatus> Optional 0-1 String (1) General status code for all package
components as a group. Values:
0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive

6 = Incomplete

7 = Promoted

8 = Refrozen

9 = Rejected

A = Remote promoted
B = Submitted

C = Unfrozen

<installTimeExpiration> Optional 0-1 Time (8), Ending time for installation window
hhmm on next planned install, 24-hour.

NOTE: No punctuation included in
time returned by ZMF.

<isApprovalPending> Optional 0-1 String (1) Y = Yes, approval pending
N = No, approval not pending

<isAuditPending> Optional 0-1 String (1) Y = Yes, audit pending
N = No, audit not pending

<isBackedOut> Optional 0-1 String (1) Y = Yes, package backed out
N = No, package not backed out

<isCmnSchedulerUsed> Optional 0-1 String (1) Y = Yes, package uses ZMF
installation scheduler
N = No, ZMF scheduler not used
NOTE: Value should be “Y” if
<schedulerType>=1.
NOTE: Value should be “N” if
<schedulerType>=2or3.

<isFreezePending> Optional 0-1 String (1) Y = Yes, package freeze pending
N = No, freeze not pending

<isInstallPending> Optional 0-1 String (1) Y = Yes, package install pending
N = No, install not pending

<isLinkedPackage> Optional 0-1 String (1) Y = Yes, this package is linked
N = No, not a linked package

154

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length | Values & Dependencies

<isManualSchedulerUsed> Optional 0-1 String (1) Y = Yes, manual installation

N = No, install is automated
NOTE: Value should be “Y” if
<schedulerType>=2.
NOTE: Value should be “N” if
<schedulerType>=1or3.

<isOtherSchedulerUsed> Optional 0-1 String (1) Y = Yes, package uses 3rd-party
installation scheduler
N = No 3rd-party scheduler used
NOTE: Value should be “Y” if
<schedulerType>=3.
NOTE: Value should be "N” if
<schedulerType>=1or2

<isPostApprovalPending> Optional 0-1 String (1) Y = Yes, post-approval pending
N = No post-approval pending

<isPostApproversAdded> Optional 0-1 String (1) Y = Yes, post-approver list added
N = No, list not added

<isPostRejected> Optional 0-1 String (1) Y = Yes, package post-rejected
N = No, not post-rejected

<isReverseRippleSubmitted> Optional 0-1 String (1) Y = Yes, baseline reverse ripple
job submitted.

N = No, baseline reverse ripple
job not submitted.

<isRevertPending> Optional 0-1 String (1) Y = Yes, package revert pending
N = No, revert not pending

<isShortApproverListUsed> Optional 0-1 String (1) Y = Yes, post-approver list has
emergency approvers only

N = No, not using emergency list
of package approvers

<isStageLibsDeleted> Optional 0-1 String (1) Y = Yes, staging libraries deleted
N = No, staging libs not deleted

<isXNodeBuildPending> Optional 0-1 String (1) Y = Yes, JCL install build pending
N = No, JCL build not pending

<isXNodeBuildRequired> Optional 0-1 String (1) Y = Yes, JCL install build required
N = No, JCL build not required

<lastBackoutUserid> Optional 0-1 String (8), | TSOID of the last package backout.
variable

<lastPromoter> Optional 0-1 String (8), | TSO user ID of most recent
variable promoter/demoter.

155

Chapter 3: Package Management

156

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length | Values & Dependencies
<lastPromotionAction> Optional 0-1 String (1) Code for most recent promotion
action. Values:
0 = No promotion
1 = Full demotion
2 = Full promotion
3 = Reverted
4 = Selective demotion
5 = Selective promotion
6 = First promotion
<lastPromotionDate> Optional 0-1 Date (10), | Date of most recent promotion
yyyymmdd | action.
<lastPromotionLevel> Optional 0-1 String (2), | Most recent promotion level in
variable user-defined promotion hierarchy.
<lastPromotionName> Optional 0-1 String (8), | Name of most recent promotion
variable action.
<lastPromotionSite> Optional 0-1 String (8), | Site name where most recent
variable promotion action took place.
<lastPromotionTime> Optional 0-1 Time (8), Time of most recent promotion
hhmmss action, 24-hour format.
<lastRevertUserid> Optional 0-1 String (8), | TSOID of the last package revert.
variable
<nearestinstallDate> Optional 0-1 Date (8), Next planned installation date
yyyymmdd | among prescheduled site installs.
<nonSourceComponentStatus> Optional 0-1 String (1) Status code for non-source
package components as a group.
Values:
0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen
<otherProblemAction> Optional 0-1 String (44), | Text of “Other” instructions if
variable installation problem occurs.

NOTE: Returned when value of
<problemActionCode>=
3.

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<package>

Required

1

String (10),
fixed

Fixed-format ZMF package name.

<packageCheckedIntoRelease>

Optional

String (1)

Y = Yes, checked into release
N = No, not checked into release

<packageld>

Optional

Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<packagelLevel>

Optional

Integer (1)

Code for package complexity level.
Values:

1 = Simple package

2 = Complex package

3 = Super package

4 = Participating package
NOTE: If value = 4, name of
complex/super package is returned
in <complexSuperPackage>.

<packageStatus>

Required

String (1)

Code for status of package in
lifecycle. Values:

1 = Approved

2 = Backed out

3 = Baselined

4 = Complex/super pkg closed

5 = Deleted (memo delete)

6 = Development

7 = Distributed

8 = Frozen

9 = Installed

A = Complex/super pkg open

B = Rejected

C = Temporary change cycle

completed

NOTE: Only values 6 or A should
be returned for package create.

<packageTitle>

Optional

0-1

String(72),
variable

Working title for package. Appears
on most listings & reports.

<packageType>

Optional

String (1)

Package install type code. Values:

1 = Planned permanent

2 = Planned temporary

3 = Unplanned permanent

4 = Unplanned temporary
NOTE: For code values =2 or 4,
<tempChangeDuration>
also required.
NOTE: For code values = 3 or 4,
<reasonCode> also required.

157

Chapter 3: Package Management

158

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length | Values & Dependencies
<problemActionCode> Optional 0-1 Integer (1) | Code for action to take if problem
occurs in package install. Values:
1 = Hold production & contact
developer for instructions
2 = Back out change, then
proceed with production
3 = Other instructions
NOTE: If value = 3, instructions in
<otherProblemAction>
tag also returned.
<reasonCode> Optional 0-1 String (3), | Customer-defined reason code for
variable unplanned package installation.
NOTE: Returned if value of
<packageType>=3or4.
<release> Optional, 0-1 String (8) Name of ERO release with which
ZMF with package is associated.
ERO only
<releaseArea> Optional, 0-1 String (8) Name of starting release area for
ZMF with release package checkin.
ERO only
<releaseJoinedDate> Optional 0-1 Date (8), Date package joined release.
yyyymmdd
<releaseJoinedTime> Optional 0-1 Time (6), Time package joined release.
HHMMSS
<requestorDept> Optional 0-1 String (4), | Workgroup or department code for
variable package requestor.
<requestorName> Optional 0-1 String (25), | Name of developer or contact
variable person requesting package create.
<requestorPhone> Optional 0-1 String(15), | Phone of developer or contact
variable person requesting package create.
<schedulerType> Optional 0-1 Integer (1) | Code for type of installation

scheduler. Values:

1 = ChangeMan scheduler
2 = Manual install
3 = Other automated scheduler

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<sitelnfoStatus>

Optional

0-1

String (1)

Status code for site components of
package as a group. Values:

0 = Active

1 = Approved

2 = Checked out

3 = Demoted

4 = Frozen

5 = Inactive

6 = Incomplete

7 = Promoted

8 = Refrozen

9 = Rejected

A = Remote promoted

B = Submitted

C = Unfrozen

<sourceLoadComponentStatus>

Optional

String (1)

Status code for source & load
components of package as a
group. Values:

0 = Active

1 = Approved

2 = Checked out

3 = Demoted

4 = Frozen

5 = Inactive

6 = Incomplete

7 = Promoted

8 = Refrozen

9 = Rejected

A = Remote promoted

B = Submitted

C = Unfrozen

<stageDevLibModel>

Optional

String (36),
variable

Qualified name of model library to
use when staging from
development environments outside
ZMF control.

<stagelLibStatus>

Optional

String (1)

Status code for package staging
library. Values:

1 = Absent

2 = Present

3 = Archived

<stageProdLibModel>

Optional

String (36),
variable

Qualified name of model library to
use when staging from ZMF
baseline or production libraries.

<tempChangeDuration>

Optional

0-1

Integer (3)

Number of days for temporary
package to remain in production.
NOTE: Returned if value of
<packageType>=2or4.

159

Chapter 3: Package Management

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length | Values & Dependencies
<timeApproved> Optional 0-1 Time (6), Time package approved, 24-hour.
hhmmss
<timeBackedOut> Optional 0-1 Time (6), Time package backed out, 24-hour.
hhmmss
<timeBaselined> Optional 0-1 Time (6), Time package baselined, 24-hour.
hhmmss
<timeCreated> Optional 0-1 Time (6), Time package created, 24-hour.
hhmmss
<timeFrozen> Optional 0-1 Time (6), Time package frozen, 24-hour.
hhmmss
<timelnstalled> Optional 0-1 Time (6), Time package installed, 24-hour.
hhmmss
<timeMemoDeleted> Optional 0-1 Time (6), Time package logically deleted,
hhmmss 24-hour format.
<timeReceived> Optional 0-1 Time (6), Time package received, 24-hour.
hhmmss
<timeRejected> Optional 0-1 Time (6), Time package rejected, 24-hour.
hhmmss
<timeReverted> Optional 0-1 Time (6), Time package reverted, 24-hour.
hhmmss
<timeSent> Optional 0-1 Time (6), Time package sent, 24-hour.
hhmmss
<timeTempChangeCycled> Optional 0-1 Time (6), Time when temporary change
hhmmss package expired, 24-hour format.
<utilitylnfoStatus> Optional 0-1 String (1) Status code for scratch/rename
components of package as a
group. Values:
0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen
<workChangeRequest> Optional 0-1 String(12), | Work order ID or change request
variable number for package.

ChangeMan® ZMF XML Services User's Guide

Unfreeze Package Parameters - PACKAGE GEN_PRMS UNFREEZE

The Serena XML function to unfreeze general package parameters unlocks those
parameters for change. You can then change the scheduled installation date or
implementation instructions, make a temporary change permanent, or update the package
description to better fit the delivered code. The package and its components remain frozen
overall.

The Serena XML service/scope/message tags for a general package parameters unfreeze
message are:

<service name="PACKAGE”>
<scope name="GEN_PRMS”>
<message name="UNFREEZE”>

These tags appear in both requests and replies.

PACKAGE GEN_PRMS UNFREEZE — Requests

The <request> tag syntax for a general package parameters unfreeze request is identical to
that for many package information management functions, including the package description
list and package general description list. Only the name parameters in the high-level
<scope> and <message> tags differ, as shown above.

PACKAGE GEN_PRMS UNFREEZE — Replies

The Serena XML reply message to an unfreeze request for general package parameters
does notreturn a <result> data structure. It does, however, return a standard <response>
data structure to indicate the success or failure of the request. Successful requests have a
return code of 00. Unsuccessful requests have a return code of 04 or higher.

Refreeze Package Parameters - PACKAGE GEN_PRMS REFREEZE

The Serena XML refreeze function for general package parameters resets these previously
unfrozen parameters to frozen status, locking them down against change.

The Serena XML service/scope/message tags for a general package parameters refreeze
message are:

<service name="PACKAGE”>
<scope name="GEN_PRMS”>
<message name="REFREEZE”>

These tags appear in both requests and replies.

PACKAGE GEN_PRMS REFREEZE — Requests

The <request> tag syntax for a general package parameters refreeze request is identical to
that for an unfreeze request. Only the name parameter in the high-level <message> tag
differs, as shown above.

161

Chapter 3: Package Management

162

PACKAGE GEN_PRMS REFREEZE — Replies

The Serena XML reply message to a refreeze request for general package parameters does
not return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

List User-Defined Package Variables - PACKAGE USR_RECS LIST

Serena XML supports up to 72 user-defined package variables established by users when
they customize ChangeMan ZMF. These are stored in the package master record with the
general parameters for a package, but are listed separately.

The Serena XML service/scope/message names for a message to list the user-defined
variables for a package are:

<service name="PACKAGE”>
<scope name="USR_RECS”>
<message name="LIST”>

These tags appear in both requests and replies.

Naming Conventions for User-Defined Variables in Serena XML
Serena XML tag names for user-defined package variables take the general form:
<userVarLenxxyy>
where:

* xx = length of variable data in bytes, formatted as 1-digit or 2-digit integer
* yy = unique 2-digit integer identifier for this particular variable of length xx

For example, <userVarLenl1@3> represents the third user-defined variable with a length of
one byte. Similarly, <userVarLen4405> is the fifth variable with a length of 44 bytes.

ChangeMan ZMF stores these values for user reference at customized exit points, but
otherwise ignores them; internally, they are meaningless. Similarly, Serena XML retrieves
these values without respect to any meaning they may hold for the user. It is the user’'s
responsibility to know the meaning of these variables and to manage them accordingly.

PACKAGE USR_RECS LIST — Requests

The following example shows how you might code a request to list user-defined variables for
a package in Serena XML. Notice the similarity of this syntax with that of many other package
requests.

Example XML — PACKAGE USR_RECS LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">

ChangeMan® ZMF XML Services User's Guide

<scope name="USR_RECS">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>

<request>

<package>IMSQO00012</package>

</request>

</message>

</scope>

</service>

PACKAGE USR_RECS LIST — Replies

User-defined variable lists for a package return nor more than one <result> tag. This tag is
followed by a standard <response> tag that indicates the success or failure of the request.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

An example XML reply to a user-defined variable list request appears below. Because the
reply may contain values for up to 72 user-defined variables, many optional tags for these
variables are omitted for clarity. Data structure details for the <result> tag follow the
example in Exhibit 3-39.

Example XML — PACKAGE USR_RECS LIST Reply

<?xml version="1.0"?>

<service name="PACKAGE">

<scope name="USR_RECS">

<message name="LIST">

<result>
<package>IMSQO00012</package>
<applName>IMSQ</applName>
<packageld>000012</packageld>
<userVarLenl199>Y</userVarLenl99>
<userVarLen301>NO</userVarLen301>
<userVarLen302>N0</userVarLen302>
<userVarLen303>N0O</userVarLen303>
<userVarLen304>N0O</userVarLen304>
<userVarLen305>N0</userVarLen305>
<userVarLen306>N0</userVarLen306>
<userVarLen401>NO</userVarLen401>
<userVarLen402>NO</userVarLen402>
<userVarLen403>NO</userVarLen403>
<userVarLen404>N0</userVarLen404>
</result>
<response>
<statusMessage>CMN8700I - LIST User record service completed</

statusMessage>

163

Chapter 3: Package Management

<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>
</message>
</scope>
</service>

Exhibit 3-39. PACKAGE USR_RECS LIST <result> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name.
variable
<package> Required 1 String (10), Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
<userVarLen101> Optional 0-1 String (1) User-defined in ZMF. Total of 16
each individually named 1-byte tags
: supported.
<userVarLen115> NOTE: See topic “Package User
<userVarLen199> Information” in the ChangeMan
ZMF Customization Guide.
<userVarLen201> Optional 0-1 String (2), User-defined in ZMF. Total of 11
each variable individually named 2-byte tags
' supported.
<userVarLen211>
<userVarLen301> Optional 0-1 String (3), User-defined in ZMF. Total of 10
each variable individually named 3-byte tags
. supported.
<userVarLen310>
<userVarLen401> Optional 0-1 String (4), User-defined in ZMF. Total of 10
each variable individually named 4-byte tags
) supported.
<userVarLen410>
<userVarLen801> Optional 0-1 String (8), User-defined in ZMF. Total of 10
each variable individually named 8-byte tags
: supported.
<userVarLen810>
<userVarLen1601> Optional 0-1 String (16), User-defined in ZMF. Total of 5
each variable individually named 16-byte tags
. supported.
<userVarLen1605>

164

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-39. PACKAGE USR_RECS LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<userVarLen4401> Optional 0-1 String (44), User-defined in ZMF. Total of 5
. each variable individually named 44-byte tags
: supported.
<userVarLen4405>
<userVarLen7201> Optional 0-1 String (72), User-defined in ZMF. Total of 5
. each variable individually named 72-byte tags
. supported.
<userVarLen7205>
(LT
@< Tip

Tags: <userVarLen101> to <userVarLen7205>. See topic “Package User Information”
in the ChangeMan ZMF Customization Guide.

List Package Install Sites - SITE PKG LIST

The planned install sites for a package can be listed using Serena XML. This function
assumes that the sites themselves already exist, thanks to site maintenance performed
elsewhere by the ChangeMan ZMF administrator. The function also assumes that package
create or update operations have already assigned install sites to the package. If neither
condition is met, no sites will be returned by the package install site list function.

The Serena XML service/scope/message tags for a package install site list message are:

<service name="SITE”>
<scope name="PKG”>
<message name="LIST”>

These tags appear in both requests and replies.

The service name is “site”, not “package”, because XML Services calls the low-level
site maintenance service in ChangeMan ZMF to perform most tasks associated with this
function. The scope name, “pkg”, identifies this function as a package-level site service.

SITE PKG LIST — Requests
Serena XML supports two kinds of package install site lists:

» All Install Sites for Package — Name the desired package in the <package> tag.
Omit the <siteName> tag. All install sites for the named package are returned,
together with site descriptions and installation status information.

* Package Install Status for Site — Name the desired package in the <package> tag
and the desired install site in the <siteName> tag. Installation status information is
returned for the named package and site.

165

Chapter 3: Package Management

The following example shows how you might code a Serena XML request to list install status
for one remote install site associated with a package.

Example XML — SITE PKG LIST Request

<?xml version="1.0"?>
<service name="SITE">
<scope name="PKG">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>IMSQO00012</package>
</request>
</message>
</scope>
</service>

SITE PKG LIST — Replies

The Serena XML reply to a package install site list request contains zero to many <result>
tags. Each <result> tag contains site description and install status information about one
remote site associated with the named package.

A standard <response> tag follows the <result>, where it can serve as an end-of-list
marker. It reports the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

The example below shows what a package install list reply message might look like. Data
structure details for the <result> tag appear after the example in Exhibit 3-40.

Example XML — SITE PKG LIST Reply

<?xml version="1.0"?>
<service name="SITE">
<scope name="PKG">
<message name="LIST">
<result>
<package>IMSQO00012</package>
<applName>IMSQ</applName>
<packageld>000012</packageld>
<siteName>SERT8</siteName>
<installDate>20081231</installDate>
<fromInstallTime>010000</fromInstallTime>
<toInstallTime>020000</tolInstallTime>
<contactName>DDDDDDDD</contactName>
<contactPhone>1234567</contactPhone>

166

ChangeMan® ZMF XML Services User's Guide

<alternateContactName>DDDDDDDD</alternateContactName>
<alternateContactPhone>1234567</alternateContactPhone>
<siteLibModel1>CMNTP.SERT8.DEV.IMSQ.#000012</siteLibModel>
<dateSent>20081028</dateSent>
<timeSent>101800</timeSent>
<dateReceived>20081028</dateReceived>
<timeReceived>101800</timeReceived>
<dateInstalled>20081028</dateInstalled>
<timeInstalled>101900</timeInstalled>
<dateBackedOut>20081212</dateBackedOut>
<timeBackedOut>070200</timeBackedOut>
<dateReverted>20081212</dateReverted>
<timeReverted>070500</timeReverted>
<backoutReasons>TEST</backoutReasons>
<backoutReason®@1>TEST</backoutReason@1>
<db2InstallBindJobCount>00</db2InstallBindJobCount>
<db2BackoutBindJobCount>00</db2BackoutBindJobCount>
<db2RippleBindJobCount>00</db2RippleBindJobCount>
<db2ReverseRippleBindJobCount>00</db2ReverseRippleBindJobCount>
<revertUserid>USER24</revertUserid>
<backoutUserid>USER24</backoutUserid>
<siteStatus>DEV</siteStatus>
</result>
<response>
<statusMessage>CMN8700I - Site Name service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>

</message>

</scope>

</service>

Exhibit 3-40. SITE PKG LIST <result> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<alternateContactName> Optional 0-1 String (25), | Name of alternate analyst or point of
variable contact for install problem.
<alternateContactPhone> Optional 0-1 String (15), | Phone number of contact in
variable <alternateContactName>.
<applName> Optional 0-1 String (4), ZMF application name. Same as first
fixed 4 bytes of package name.
<backoutReason01> Optional 0-1 String (72), | Up to nine sequential notations for
each variable reason package backed out at site.
NOTE: If <dateBackedOut>is
) non-zero
<backoutReason09> '
! <backoutReason01>is
required.

167

Chapter 3: Package Management

Exhibit 3-40. SITE PKG LIST <result> Data Structure (Continued)

Data Type

Subtag Use Occurs | & Length Values & Dependencies

<backoutReasons> Optional 0-1 String (72), | Reason package backed out at site.
variable

<backoutUserid> Optional 0-1 String (8), USERID that performed backout.
variable

<contactName> Optional 0-1 String (25), | Name of analyst originating package,
variable or point of contact for install problem.

<contactPhone> Optional 0-1 String (15), | Phone number of contact in
variable <contactName>.

<dateBackedOut> Optional 0-1 Date (8), Date package backed out at site.
yyyymmdd

<datelnstalled> Optional 0-1 Date (8), Date package installed at site.
yyyymmdd

<dateReceived> Optional 0-1 Date (8), Date package received at site.
yyyymmdd

<dateReverted> Optional 0-1 Date (8), Date package reverted.
yyyymmdd

<dateTempChangeCycled> Optional 0-1 Date (8), Date temporary change expired.
yyyymmdd

<dateSent> Optional 0-1 Date (8), Date package sent to site.
yyyymmdd

<db2BackoutBindJobCount> Optional 0-1 Integer (2), | Number of DB2 backout bind jobs
fixed executed at site.

NOTE: Requires ZMF DB2 Option.
<db2InstallBindJobCount> Optional 0-1 Integer (2), | Number of DB2 install bind jobs

fixed executed at site.

NOTE: Requires ZMF DB2 Option.
<db2Reverse Optional 0-1 Integer (2), | Number of DB2 baseline reverse
RippleBindJobCount> fixed ripple bind jobs executed at site.

NOTE: Requires ZMF DB2 Option.
<db2RippleBindJobCount> Optional 0-1 Integer (2), | Number of DB2 baseline ripple bind

fixed jobs executed at site.

NOTE: Requires ZMF DB2 Option.
<fromlInstallTime> Optional 0-1 Time, Start time for period during which

hhmmss installation of package is planned at
named site, 24-hour format.
<installDate> Optional 0-1 Date, Planned site install date for package.
yyyymmdd
<package> Required 1 String (10), | Fixed-format ZMF package name.
fixed

168

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-40. SITE PKG LIST <result> Data Structure (Continued)

Data Type

Subtag Use Occurs | & Length Values & Dependencies

<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as
fixed last 6 bytes of package name.

<revertUserid> Optional 0-1 String (8), TSOID of reverter.
variable

<siteLibModel> Optional 0-1 String (32), | Fully qualified z/OS data set name of
variable library used as model for library setup

when package is installed.

<siteName> Optional 0-1 String (8), ZMF name of install site.
variable

<siteStatus> Optional 0-1 String (3), Determined site status.
variable

<timeBackedOut> Optional 0-1 Time (8), Time package backed out, 24-hour.
hhmmss

<timelnstalled> Optional 0-1 Time (8), Time package installed, 24-hour.
hhmmss

<timeReceived> Optional 0-1 Time (8), Time package received, 24-hour.
hhmmss

<timeReverted> Optional 0-1 Time (8), Time package reverted, 24-hour.
hhmmss

<timeSent> Optional 0-1 Time (8), Time package sent, 24-hour.
hhmmss

<timeTempChangeCycled> Optional 0-1 Time (8), Time temporary change expired,
hhmmss 24-hour format.

<tolnstallTime> Optional 0-1 Time, End time for period during which
hhmmss installation of package is planned at

named site, 24-hour format.

Unfreeze Package Install Sites - PACKAGE SITES UNFREEZE

The Serena XML function to unfreeze package install sites unlocks these site assignments
for change. The XML service/scope/message tags for a package-level site unfreeze
message are:

<service name="PACKAGE”>
<scope name="SITES”>
<message name="UNFREEZE”>

These tags appear in both requests and replies.

PACKAGE SITES UNFREEZE — Requests

The <request> tag syntax for a package install site unfreeze request is identical to that for
for many package information management functions, including the package description list

169

Chapter 3: Package Management

170

and package general description list. Only the name parameters in the high-level <scope>
and <message> tags differ, as shown above.

PACKAGE SITES UNFREEZE — Replies

The Serena XML reply message to an unfreeze request for package install sites does not
return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

Refreeze Package Install Sites - PACKAGE SITES REFREEZE

The Serena XML refreeze function for package install sites resets these previously unfrozen
assignments to frozen status, locking them down against change.

The XML service/scope/message tags for a package-level site refreeze message are:

<service name="PACKAGE”>
<scope name="SITES”>
<message name="REFREEZE”>

These tags appear in both requests and replies.

PACKAGE SITES REFREEZE — Requests

The <request> tag syntax for a general package parameters refreeze request is identical to
that for an unfreeze request. Only the name parameter in the high-level <message> tag
differs, as shown above.

PACKAGE SITES REFREEZE — Replies

The Serena XML reply message to a refreeze request for package install sites does not
return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

List Package Installation Dependencies - PACKAGE SCH_RECS LIST

ChangeMan ZMF captures package installation dependencies in the package installation
schedule records. Serena XML can list all such dependency records for a package, or can
selectively determine whether a dependency exists between a package and a particular job.

The Serena XML service/scope/message names for message to /ist package installation
dependency records are:

<service name="PACKAGE”>
<scope name="SCH_RECS”>
<message name="LIST”>

These tags appear in both request and reply messages.

ChangeMan® ZMF XML Services User's Guide

PACKAGE SCH_RECS LIST — Requests

Serena XML supports two types of package installation dependency requests:

List All Installation Dependencies — Name the desired package in the <package>
tag. Omit the <predecessorJob> and <successorJob> tags, or enter a “match-
all” (asterisk) wild card in each. The function returns a list of all predecessor and
successor jobs that must execute before or after package installation to complete a
successful install.

Selective Installation Dependency Check — Name the desired package in the
<package> tag. Enter the job name to check for an installation dependency in the
<predecessorJob> tag, the <successorJob> tag, or both as appropriate.
Optionally, enter a wildcard pattern to check for several similar job names. The
function returns installation scheduling dependency information for the named job(s) if
such dependencies exist. Otherwise, no <result> is returned in the reply message.

The following example shows how you might code a request to list all package installation
dependencies in Serena XML. Notice the use of match-all wildcard characters in the
<predecessorJob> and <successorJob> tags. Data structure details for the <request>
tag appear in Exhibit 3-41.

Example XML — PACKAGE SCH_RECS LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SCH_RECS">
<message name="LIST">
<header>

<subsys>8</subsys>
<product>CMN</product>

</header>
<request>

<package>TES5000001</package>

</request>
</message>
</scope>
</service>

171

Chapter 3: Package Management

172

Exhibit 3-41. PACKAGE SCH_RECS LIST <request>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended to replace
<package>. Use <package>
instead of <app1Name> &
<packageld>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.
<predecessorJob> Optional 0-1 String (8), Name of job(s) that must run before
variable package is installed.
NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk ().
NOTE: Omit tag or use asterisk (*)
wildcard to list all predecessor jobs.
<successorJob> Optional 0-1 String (8), Name of job(s) that must run after
variable package is installed.

NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk ().

NOTE: Omit tag or use asterisk (*)
wildcard to list all successor jobs.

PACKAGE SCH_RECS LIST — Replies

Serena XML returns zero to many <result> tags in package installation dependency list
reply. Each <result> tag contains the name of a predecessor job, a successor job, or both
that the package requires for successful installation. The <result> tag recurs as needed to

accommodate all scheduled predecessor and successor jobs.

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>

tag may serve as an end-of-list marker.

ChangeMan® ZMF XML Services User's Guide

An example XML reply that lists package installation scheduling records appears on the next
page. Data structure details for the <result> tag follow in Exhibit 3-42.

Example XML — PACKAGE SCH_RECS LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SCH_RECS">
<message name="LIST">
<result>
<package>TES5000001</package>
<applName>TES5</applName>
<packageld>000001</packageld>
<successorJob>SCHJOBO1</successorJob>
<predecessorJob>SCHJOBO2</predecessorJob>
</result>
<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 3-42. PACKAGE SCH_RECS LIST <result>

Data Type &

Subtag Use Occurs | Length Values & Dependencies

<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.

<package> Optional 1 String (10), Fixed-format ZMF package name.
fixed

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

<predecessorJob> Optional 0-1 String (8), Name of a job that must run before
variable package is installed.

<successorJob> Optional 0-1 String (8), Name of a job that must run after
variable package is installed.

173

Chapter 3: Package Management

174

List Package Implementation Instructions - PACKAGE IMP_INST LIST

You can retrieve package implementation instructions independently of other package
parameters using Serena XML. Results are returned for one package.

The Serena XML service/scope/message names for message to /ist implementation
instructions for a package are:

<service name="PACKAGE”>
<scope name="IMP_INST”>
<message name="LIST”>

These tags appear in both request and reply messages.

PACKAGE IMP_INST LIST — Requests

The <request> tag syntax for request to list package implementation instructions is identical
to that for many package information management functions, including the package
description list and package general description list. Only the name parameter in the high-
level <scope> tag differs, as shown above.

PACKAGE IMP_INST LIST — Replies

The reply message for a package implementation instruction list includes one <result> tag
with package name and implementation instructions, if the package is found. This tag is
followed by a standard <response> tag that indicates the success or failure of the request.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

An example XML reply to a package description list request appears below. Data structure
details for the <result> tag follow the example in Exhibit 3-43.

Example XML — PACKAGE IMP_INST LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="IMP_INST">
<message name="LIST">
<result>
<package>TES5000001</package>
<applName>TES5</applName>
<packageld>000001</packageld>
<packageImplInst>CR153620</packageImplInst>
</result>
<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>

ChangeMan® ZMF XML Services User's Guide

</scope>
</service>

Exhibit 3-43. PACKAGE IMP_INST LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
fixed first 4 bytes of package name.
<package> Optional 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
<packagelmplinst> Optional 0-46 | String (72), Implementation instructions in free
variable format text. Repeatable to
accommodate multiple lines of text.

List Package Approvers - APPROVER PKG LIST

The Serena XML function to list package approvers retrieves an instantiated list of actual
approvers for a named package. Actual approvers are those relevant to the named package
after applying the approver business rules established by your administrator. They comprise
a subset of relevant application approvers, emergency approvers for unplanned or temporary
changes, and approvers assigned to review this package by a customized ChangeMan ZMF
exit.

Note

The list of authorized approvers for a package, before the application of
business rules, is associated with the parent application of the package rather
than the package itself. Application approvers are retrieved with a different
Serena XML function.

The Serena XML service/scope/message tags for a message to list package approvers are:

<service name="APPROVER”>
<scope name="PKG”>
<message name="LIST”>

These tags appear in both request and reply messages.

The service name is “approver”, not “package”, because XML Services calls the low-
level approver maintenance service in ChangeMan ZMF to perform most tasks associated
with this function. The scope name, “pkg”, identifies this function as a package-level
service.

175

Chapter 3: Package Management

APPROVER PKG LIST — Requests
Serena XML supports two types of package approver lists:

« All Approvers for Named Package — Name the desired package in the
<package> tag. Enter a “match-all” (asterisk) wildcard character in the
<approverEntity> tag or omit it altogether. Returns all package approvers and
reports their approval actions (approved, rejected, reviewing, no response).

+ Approval Activity for Named Approver(s) — Name the desired package in the
<package> tag. Enter the desired approver entity ID, as defined to RACF or other
security system, in the <approverEntity> tag. Returns approver description for all
TSO user IDs associated with the named approver entity and reports their approval
actions (approved, rejected, reviewing, no response).

The following example shows how you might code a request to list all approvers for a
package. Data structure details for the <request> tag appear in Exhibit 3-44.

Example XML — APPROVER PKG LIST Request

<?xml version="1.0"?>
<service name="APPROVER">
<scope name="PKG">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPO0O0OOO7</package>
</request>
</message>
</scope>
</service>

Exhibit 3-44. APPROVER PKG LIST <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.

NOTE: OK to omit trailing blanks.
NOTE: Not recommended to replace
<package>.Use <package>
instead of <app1Name> &
<packageld>.

176

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-44. APPROVER PKG LIST <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<approverEntity> Optional 0-1 String (8), TSO user ID or security system entity
variable ID of desired package approver.
NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk (*).
NOTE: Omit tag or use asterisk (*)
wildcard to list all approver entities.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packagelId>.

APPROVER PACKAGE LIST — Replies

The Serena XML reply to a package approver list request returns zero to many <result>
tags. Each <result> tag contains information about one package approver, including TSO
user ID, the associated approver entity defined in RACF (or other security system), an
approver entity description, and approver status in the approval process. If multiple TSO user
IDs are associated with the RACF approval entity, each generates a separate <result> tag.

A standard <response> data element follows the last <result> tag, if any, to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last tag returned in the reply message, the
<response> tag serves as an end-of-list marker.

An example XML reply that lists package approvers appears below. Data structure details for
the <result> tag follow in Exhibit 3-45.

Example XML — APPROVER PKG LIST Reply

<?xml version="1.0"?>
<service name="APPROVER">
<scope name="PKG">
<message name="LIST">
<result>
<package>ACTPO0OOOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<approverEntity>ACTPLEAD</approverEntity>
<approverDesc>Lead Programmer - ACTP Application</approverDesc>
<approverAction>1</approverAction>
<approvedDate>20090127</approvedDate>

177

Chapter 3: Package Management

<approvedTime>083100</approvedTime>
<approver>USER24</approver>
<approvalOrder>10</approvalOrder>
<userListCount>02</userListCount>
<isApproverNotified>Y</isApproverNotified>
<postApprovalNoticeEnabled>N</postApprovalNoticeEnabled>
<notification>
<notifierType>4</notifierType>
<userList>USER24@SERENA.COM;USER24</userList>
</notification>
<notification>
<notifierType>1</notifierType>
<userList>USER24</userlList>
</notification>

</result>

<result>
<package>ACTPO0O0OOO7</package>
<applName>ACTP</applName>
<packageld>000007</packageld>
<approverEntity>ACCTPAY</approverEntity>
<approverDesc>Accounts Payable Manager</approverDesc>
<approverAction>1</approverAction>
<approvedDate>20090127</approvedDate>
<approvedTime>083100</approvedTime>
<approver>USER24</approver>
<approvalOrder>20</approvalOrder>
<userListCount>01</userListCount>
<isApproverNotified>Y</isApproverNotified>
<postApprovalNoticeEnabled>N</postApprovalNoticeEnabled>
<notification>
<notifierType>4</notifierType>
<userList>USER24@SERENA.COM; USER24</userlList>
</notification>

</result>

<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>

</message>

</scope>
</service>

178

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-45. APPROVER PKG LIST <result> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
fixed 4 bytes of package name.
<approvalOrder> Optional 0-1 Integer (2), Approval level or sequence assigned
variable to this approver entity for hierarchical
approvals.
<approvedDate> Optional 0-1 Date, Date package approval action taken
yyyymmdd by this approver. No punctuation.
<approvedTime> Optional 0-1 Time, Time package approval action taken
hhmmss by this approver. No punctuation.
<approver> Optional 0-1 String (8), TSO user ID of individual approver.
variable Mapped to
<approverEntity> by RACF
or other security system.
<approverAction> Optional 0-1 Integer (1) Code for most recent approval action
of approver entity. Values:
1 = Approved
2 = Checkoff
3 = Rejected
4 = Review pending
5 = No response to notification
<approverDesc> Optional 0-1 String (44), Text description of approver level or
variable function (e.g., project leader, QA
manager) for
<approverEntity>.
<approverEntity> Optional 1 String (8), Security system entity ID of package
variable approver. Mapped to TSO user ID in
<approver > by RACF or other
security system.
<checkoffList> Optional 0-14 | String (72), Checkoff list.
variable
<checkoffList01> Optional 0-1 String (72), Text descriptions for up to 14
each variable possible approval actions taken by
approver from custom-defined
. checkoff list.
<checkoffList14> NOTE: At least one tag required if
value in <approverAction> =
2.
<isApproverNotified> Optional 0-1 String (1), Has approver entity been notified that
variable approval action is requested?

Y = Yes
N =No

179

Chapter 3: Package Management

180

Exhibit 3-45. APPROVER PKG LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<isLinkedApprover> Optional 0-1 String (1), Is this a linked package approver?
variable Y = Yes
N =No
<notification> Optional 0-35 | Complex Describes notifications sent when
this approver takes an approval
action. See Exhibit 3-46.
<package> Optional 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
<postApprovalNoticeEnabled> | Optional 0-1 String (1), Is this approver to be notified of
variable emergency/temporary changes for
post-installation approval review?
Y = Yes
N =No
<rejectReasons> Optional 0-10 | String (72), Reject reasons.
variable
<rejectReasons01> Optional 0-1 String (72), Up to ten sequentially numbered,
each variable free-format text entries containing
reason(s) for package rejection by
. approver.
<rejectReasons10> NOTE: At least one tag required if
value in <approverAction>=
3.
<userListCount> Optional 0-1 Integer(2) The number of users to notify, the

number of returned <notification>
complex tags.

<notification> Subtag

The <notification> tag describes the notifications to be issued when this approver entity

takes an approval action. The tag represents a complex data structure with subtags of its

ChangeMan® ZMF XML Services User's Guide

own. It is repeatable to accommodate multiple approvers and multiple notification methods.
Data structure details for this tag appear in Exhibit 3-46.

Exhibit 3-46. <notification> Subtag Data Structure

Data Type
Subtag Use Occurs & Length Values & Dependencies
<notifierType> Optional 0-1 Integer (1) | ZMF code for notification method to use
with notifications sent to users in
<userList>. values:
1 = MVS Send message
4 = E-mail
5 = SERNET email msg
6 = Batch messaging job
<userList> Optional 0-1 String (44), | List of individual approvers to notify
variable when the named approver entity takes

an approval action. List consists of user
TSO IDs or E-mail addresses separated
by commas.

NOTE: TSO IDs required if
<notifierType>=1.

NOTE: E-mail addresses required if
<notifierType>=4or5.

List Affected Applications - PACKAGE AFF_APLS LIST

List the applications affected by a complex/super package using the Serena XML function to
list affected applications for a package. This function includes only complex and super
packages in its scope.

The Serena XML service/scope/message tags for a message to list applications affected by a
complex/super package are:

<service name="PACKAGE”>
<scope name="AFF_APLS”>
<message name="LIST”>

These tags appear in both request and reply messages.

PACKAGE AFF_APLS LIST — Requests

The <request> tag syntax for a request to list affected applications is identical to that for a
request to list general package parameters. Only the name parameter in the high-level

181

Chapter 3: Package Management

182

<scope> tag differs, as shown above. However, additional data constraints apply. (See
Exhibit 3-47.

Exhibit 3-47. PACKAGE AFF_APLS LIST <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<appIlName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.

NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
<package> substitute. Use
<package> instead of
<applName> &
<packageld>.

<package> Required 0-1 String (10), Fixed-format ZMF package name
fixed for the complex/super package.

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &
<packageld>.

PACKAGE AFF_APLS LIST — Replies

The Serena XML reply message for this function returns zero to many <result> tags. Each
<result> contains names one application affected by the named complex/super package. If
no participating packages are attached to the complex/super package, no <result> tags
are returned.

Astandard <response> tag follows the last <result> tag, if any, to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. As the last tag returned in the reply message, the
<response> tag may serve as an end-of-list marker.

An example XML reply that lists all affected applications for a package appears below. Data
structure details for the <result> tag follow in Exhibit 3-48.

Example XML — PACKAGE AFF_APLS LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="AFF_APLS">
<message name="LIST">
<result>
<package>TES5000003</package>
<applName>TES5</applName>

ChangeMan® ZMF XML Services User's Guide

<packageld>000003</packageld>
<affectedAppl>ACTP</affectedAppl>
</result>
<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>

</message>

</scope>

</service>

Exhibit 3-48. PACKAGE AFF_APLS LIST <result> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<affectedAppl> Optional 0-1 String (8), ZMF application name for a
variable participating package.
<applName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
<package> Optional 0-1 String (10), Fixed-format ZMF package name
fixed for the complex/super package.
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

List Participating Packages - PACKAGE PRT_PKGS LIST

List the participating applications in a complex/super package using the Serena XML function
to list participating packages. This function includes only complex/super packages in its
scope.

The Serena XML service/scope/message tags for a message to list participating packages
for a complex/super package are:

<service name="PACKAGE”>
<scope name="PRT_PKGS”>
<message name="LIST”>

These tags appear in both request and reply messages.

PACKAGE PRT_PKGS LIST — Requests

The <request> tag syntax for a request to list participating packages is identical to that for a
request to list affected applications. (See Exhibit 3-47.) Only the name parameter in the high-
level <scope> tag differs, as shown above.

183

Chapter 3: Package Management

PACKAGE PRT_PKGS LIST — Replies

The Serena XML reply message for this function returns zero to many <result> tags. Each
<result> names one participating package in the named complex/super package. If no
participating packages are attached to the complex/super package, no <result> tags are
returned.

Astandard <response> tag follows the last <result> tag, if any, to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. As the last tag returned in the reply message, the
<response> tag may serve as an end-of-list marker.

An example XML reply that lists participating packages follows. Data structure details for the
<result> tag appear in Exhibit 3-49.

Example XML — PACKAGE PRT_PKGS LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PRT_PKGS">
<message name="LIST">
<result>
<package>TES5000002</package>
<applName>TES5</applName>
<packageld>000002</packageld>
<partPackage>TES5000003</partPackage>
</result>
<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 3-49. PACKAGE PRT_PKGS LIST <result> Data Structure

Data Type &

Subtag Use Occurs | Length Values & Dependencies

<appIName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.

<package> Optional 0-1 String (10), Fixed-format ZMF package name of
fixed complex/super package.

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-49. PACKAGE PRT_PKGS LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.
<partPackage> Optional 0-1 String (10), Fixed-format ZMF name of participating
variable package in the complex/super package
named in <package>.

List Linked Packages - PACKAGE PKG_LINK LIST

Serena XML provides a means for ChangeMan ZMF customers to list any packages on
remote LPARs or non-mainframe servers that are linked (via external software) to an
explicitly named ChangeMan ZMF package on the local mainframe LPAR. Only simple
packages on the local LPAR are included in the scope of this function.

The XML service/scope/message names for a message to list linked packages are:

<service name="PACKAGE”>
<scope name="PKG_LINK”>
<message name="LIST”>

These tags appear in both request and reply messages.

PACKAGE PKG_LINK LIST — Request
Serena XML supports the following linked package list options:

+ All Remote Packages Linked to a Local Package — Name the desired local
package in the <package> tag. Omit all other subtags of the <request> element.
The function returns a list of all remote packages linked to the local package.

* All Local Packages Linked to a Remote Package — Name the desired remote
package in the <1inkPackage> tag. The package naming conventions of the remote
system are accepted in <linkPackage>. Omit all other subtags of the <request>
data element. The function returns a list of all local packages linked to the named
remote package.

* All Local Packages Linked to Packages on a Remote Server — In tag
<sourcelLinkIpAddress>, enter the name or IP address of the desired remote
server. Use the same naming or addressing conventions used by the remote link
management software when it passes these values to ChangeMan ZMF. Omit all
other subtags of the <request> data element. The function returns a list of all local
packages linked to remote packages that reside on the named remote server.

» All Local Packages Linked Elsewhere by a User — Enter the name or TSO user ID
of the desired link requestor in the <1inkRequestor> tag. Omit all other subtags of
the <request> data element. The function returns a list of all local packages linked
to remote packages when those links were requested by the named user.

185

Chapter 3: Package Management

The following example shows how you might code a request to list all remote, linked
packages for a named local package using Serena XML. Data structure details for the linked
package list <request> tag appear in Exhibit 3-50.

Example XML — PACKAGE PKG_LINK LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PKG_LINK">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000003</package>
</request>
</message>
</scope>
</service>

Exhibit 3-50. PACKAGE PKG_LINK LIST <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<applName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.
<linkPackage> Optional 0-1 String (255), | Name(s) of one or more linked package(s)
variable on remote server, delimited by semicolons.
Package naming conventions are those of
remote system.
<linkRequestor> Optional 0-1 String (20), Name or TSO user ID of package link
variable requestor.
<package> Required 0-1 String (10), Fixed-format ZMF package name for target
fixed package on local LPAR.
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last 6
fixed bytes of package name.
<sourcelLinklpAddress> Optional 0-1 String (255), | Network IP address for remote server
variable where linked package resides.
NOTE: ZMF stores address as provided by
external link management software. May
contain server name known to that software
instead of an IP address.
<sourceLinkPortid> Optional 0-1 String (8), Network port ID for remote server where
variable linked package resides.

186

ChangeMan® ZMF XML Services User's Guide

PACKAGE PKG_LINK LIST — Replies

The linked package list reply contains zero to many <result> tags. Each <result>
contains information about a package on the local LPAR that is linked to at least one remote
package with the requested characteristics. Remote package name(s), application, server,
and link requestor are included as they are stored in the package master records for the local
package. Information such as package level, type, and status pertain to the local package,
not the linked remote package(s).

A standard <response> data structure follows the <result> tags, if any, to indicate the
success or failure of the list request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the last data element returned
in a Serena XML reply message, the <response> tag serves as an end-of-list marker.

An example reply to a linked package list request follows. Data structure details for the linked
package list <result> tag appear in Exhibit 3-51.

Example XML — PACKAGE PKG_LINK LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PKG_LINK">

<message name="LIST">

<result>
<package>TES5000003</package>
<applName>TES5</applName>
<packageld>000003</packageld>
<packagelevel>4</packageLevel>
<packageType>1</packageType>
<packageStatus>6</packageStatus>
<installDate>20091231</installDate>
<linkPackage></linkPackage>
<sourcelLinkIpAddress></sourceLinkIpAddress>
</result>

<response>
<statusMessage>CMN87641 - Package is not Linked.</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8764</statusReasonCode>
</response>

</message>

187

Chapter 3: Package Management

188

</scope>
</service>

Exhibit 3-51. PACKAGE PKG_LINK LIST <result> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.
<installDate> Optional 0-1 Date, Planned install date for local package.
yyyymmdd
<linkDate> Optional 0-1 Date, Link date.
yyyymmdd
<linkPackage> Optional 0-1 String (255), | Name(s) of one or more linked package(s)
variable on remote server, delimited by semicolons.
Naming conventions are those of remote
system.
<linkRequestor> Optional 0-1 String (20), Name or TSO user ID of package link
variable requestor.
<linkTime/> Optional 0-1 Time, Link time
hhmmss
<package> Optional 0-1 String (10), ZMF fixed-format package name for local
fixed package.
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of <package>.
<packagelevel> Optional 0-1 String (1) Code for package complexity or level in
hierarchy of local package. Values:
1 = Simple package
2 = Complex package
3 = Super package
4 = Participating package
<packageStatus> Optional 0-1 String (1) Code for status of local package in

lifecycle. Values:

1 = Approved

2 = Backed out

3 = Baselined

4 = Complex/super pkg closed

5 = Deleted (memo delete)

6 = Development

7 = Distributed

8 = Frozen

9 = Installed

A = Complex/super pkg open

B = Rejected

C = Temporary change cycle
completed

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-51. PACKAGE PKG_LINK LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<packageType> Optional 0-1 String (1) Code for package install type of local
package. Values:
1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary
<sourcelLinklpAddress> Optional 0-1 String (255), | Network IP address for remote server
variable where linked package resides.
NOTE: ZMF stores address as provided by
external link management software. May
contain server name known to that software
instead of an IP address.
<sourceLinkPortid> Optional 0-1 String (8), Network port ID for remote server where
variable linked package resides.

List Package Library Types - LIBTYPE PKG LIST

You can retrieve library type specifications for a package using the Serena XML package
library type list function. These specifications are defined separately by your
ChangeMan ZMF administrator.

The Serena XML service/scope/message tags and attributes for messages to list package
library type records are:

<service name="LIBTYPE”>
<scope name="PKG”>
<message name="LIST”>

These tags appear in both requests and replies.

The service name is “1ibtype”, not “package”, because XML Services calls the low-level
library type management service in ChangeMan ZMF to perform most tasks associated with
this function. The scope name, “pkg”, identifies this message as a package-level service.

LIBTYPE PKG LIST — Requests

You can request specifications for one or more library types defined for a named package. To
retrieve all library type specifications for the package, no library type name is required.
Specifications for an explicitly named library can also be requested. Filtering by DB2 library
type is an additional option.

The following example shows how you might code a request to list all library types for a
package that are not DB2 libraries. Data structure details for the <request> data element
appear in Exhibit 3-52.

189

Chapter 3: Package Management

Example XML —LIBTYPE PKG LIST Request

<?xml version="1.0"?>
<service name="LIBTYPE">

<scope name="PKG">

<message name="LIST">

<header>

<subsys>8</subsys>

<product>CMN</product>

</header>
<request>

<package>IMSQO00012</package>

</request>
</message>
</scope>
</service>

Exhibit 3-52. LIBTYPE PKG LIST <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
<package> substitute. Use
<package> instead of
<applName> & <packageld>.
<isDb2LibType> Optional 0-1 String (1) Y = Include only DB2 libraries.
N = Omit all DB2 libraries.
NOTE: Omit tag or use asterisk (*)
wildcard to request both DB2 and non-
DB2 library types.
<libType> Optional 0-1 String (3), Name of specific library type to list.
variable NOTE: Omit tag or use asterisk (*)
wildcard to request all library types.
<package> Optional 0-1 String (10), | Fixed-format ZMF name of package for
fixed which library type info is requested.
<packageld> Optional 0-1 Integer (6), |ZMF package ID number. Same as last
fixed 6 bytes of <package>.

NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packagelId>.

190

ChangeMan® ZMF XML Services User's Guide

LIBTYPE PKG LIST — Replies

The reply message listing package library types returns zero to many <result> data
elements. Each <result> tag contains specifications for one library type defined for the
named package.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

The following example shows what a Serena XML package library list reply message might
look like. Data structure details for the <result> tag appear in Exhibit 3-53.

Example XML — LIBTYPE PKG LIST Reply

<?xml version="1.0"?>
<service name="LIBTYPE">
<scope name="PKG">
<message name="LIST">

<result>
<package>IMSQO00012</package>
<applName>IMSQ</applName>
<packageld>000012</packageld>
<libType>CPC</1libType>
<likeType>1</likeType>
<isPdselLibType>N</isPdselLibType>
<chkOutComponentGenDesc>N</chkOutComponentGenDesc>
<chkOutActivityFile>N</chkOutActivityFile>
<deferStagelLibCreation>Y</deferStageLibCreation>
<includeUtilityInfo>N</includeUtilityInfo>
<libTypeDesc>Copybooks common</1libTypeDesc>
<isImsLibType>N</isImsLibType>
<isDb2LibType>N</isDb2LibType>
<dd1SqlSubType>N</dd1SqlSubType>
<storedProcSubType>N</storedProcSubType>
<triggerSubType>N</triggerSubType>
<bindControlSubType>N</bindControlSubType>
<packageBindControlSubType>N</packageBindControlSubType>
<sqlStoredProcDefinition>N</sqlStoredProcDefinition>
</result>

<response>
<statusMessage>CMN860OI - The package library type list is complete.</
statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8600</statusReasonCode>
</response>
</message>

191

Chapter 3: Package Management

</scope>
</service>

Exhibit 3-53. LIBTYPE PKG LIST <result> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.
<apsDevLib> Optional, 0-1 String (44), | Name of APS development library
APS only variable associated with this ZMF library type.
NOTE: If<isApsLibType>isY, this
tag is required.
<apsEntity> Optional, 0-1 String (8), Name of APS entity type associated with
APS only variable this ZMF library type.
NOTE:1f<isApsLibType>isY, this
tag is required.
<bindControlSubType> Optional, 0-1 String (1) Y = Yes, bind control library subtype
DB2 only N = No, not bind control library subtype
<chkOutActivityFile> Optional 0-1 String (1) Y = Yes, copy component to activity file
at checkout
N = Don’t make activity file copy
NOTE: Tag
<chkOutActivityFile> also
required if value is Y.
<chkOutComponentGenDesc> | Optional 0-1 String (1) Y = Yes, copy component general
description to staging change
description at checkout
N = No, leave component
change description blank
in staging at checkout
<db2SqlTerminationChar> Optional, 0-1 String (1) DB2 SQL sentence termination
DB2 only character.
<dbrmSubType> Optional 0-1 String (1) Y = Yes, DBRM subtype
N = Not DBRM subtype
<ddISqISubType> Optional, 0-1 String (1) Y = Yes, SQL DDL library subtype
DB2 only N = No, not SQL DDL library subtype
<deferStageLibCreation> Optional 0-1 String (1) Y = Yes, defer allocation of library
type in staging library to first
component checkout
N = No, don’t defer library allocation

192

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-53. LIBTYPE PKG LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<imsEntity> Optional, 0-1 String (1) Code for IMS entity type associated with
IMS only this ZMF library type. Values:

1 = PSB source
2 = DBD source
3 = MFS source
4 = PSB target
5 = DBD target
6 = FMT target
7 = REF target

NOTE:1i<isImsLibType>isY, this
tag is required.

<includeUtilitylnfo> Optional 0-1 String (1) Y = Yes, include scratch/rename
utility info with library type.
N = No, omit scratch/rename info.

<isApsLibType> Optional 0-1 String (1) Y = Yes, this is APS library type
N = No, not APS library type

<isDb2LibType> Optional 0-1 String (1) Y = Yes, this is DB2 library type
N = No, not DB2 library type

<isHfsLibType> Optional 0-1 String (1) Y = Yes, this is HFS library type
N = No, not HFS library type

<islmsLibType> Optional 0-1 String (1) Y = Yes, this is IMS library type

N = No, not IMS library type
NOTE: Tag <imsEntity> also
required if value is Y.

<isPdseLibType> Optional 0-1 String (1) Y = Yes, this is PDSE library type
N = No, not PDSE library type

<libType> Required 1 String (3), Name of library type for which
variable specifications are reported.

<libTypeDesc> Optional 0-1 String (44), | Text description of library type.
variable

<librarySequenceNo> Optional 0-1 Integer Library sequence number

<likeType> Optional 0-1 String (1) Code for “like-library” type assigned to

library type name. Values:

1 = Like Copy Library

2 = Like Load Library

3 = Like Other Library

4 = Like PDS Library

5 = Like Source Library

6 = Like Ncal Library

7 = Like Object Library
NOTE: Tag
<targetlLoadlLibType> also
required if value is 5.

193

Chapter 3: Package Management

194

Exhibit 3-53. LIBTYPE PKG LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<package> Required 1 String (10), | ZMF fixed-format package name.
fixed
<packageBindControlSubType> | Optional, 0-1 String (1) Y = Yes, package bind control subtype
DB2 only N = No, not package bind ctrl subtype
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as last
fixed 6 bytes of <package>.
<sqlStoredProcDefinition> Optional, 0-1 String (1) Y = Yes, SQL stored proc definition
DB2 only N = No, not SQL stored proc definition
<storedProcSubType> Optional, 0-1 String (1) Y = Yes, DB2 stored procedure subtype
DB2 only N = No, not stored procedure subtype
<targetActivityFile> Optional 0-1 String (3), Name of target activity file library type
variable associated with this library.
NOTE: This tag is required if value in
<chkOutActivityFile>isY.
<targetLoadLibType> Optional 0-1 String (3), Name of “like-Load” target library type
variable associated with this source library.
NOTE: This tag is required if value in
<likeLibType> is5.
<triggerSubType> Optional, 0-1 String (1) Y = Yes, DB2 trigger library subtype
DB2 only N = No, not DB2 trigger library subtype

List Package Promotion History - PACKAGE PRM_HIST LIST

Promotion history records for a package as a whole can be listed using the package
promotion history list function. Promotion history listings for components in a package require
a different Serena XML function. (See Package Promoted Component List - PACKAGE

PRM_CMP LIST.)

The Serena XML service/scope/message names for a package promotion history list

message are:

<service name="PACKAGE”>

<scope name="PRM_HIST”>

<message name="LIST”>

These tags appear in both requests and replies.

PACKAGE PRM_HIST LIST — Request

This function supports two promotion history request types:

« All Promotion Actions at All Sites — Name the desired package in the <package> tag
and enter a “1” in the <requestType> tag. Returns a complete history of all promotion
and demotion actions taken against the named package on all sites.

ChangeMan® ZMF XML Services User's Guide

* Current Promotion Status at Selected Site(s) — Name the desired package in the
<package> tag and enter a “2” in the <requestType> tag. Specify a site of interest in
the <promotionSiteName> tag; for all sites, omit this tag or enter a “match-all”
(asterisk) wildcard character. Returns the current promotion status of the named package
at the specified sites. If the site has prior promotion history, then that information is
returned. If the only history associated with the site is the ‘submitted’ request, then no
information is returned for the site.

To further narrow either type of request, specify a promotion level or site of interest. You can
also filter promotion status and promotion action using appropriate yes/no flag tags.

Note

Yes/no flags for status and action filtering each take default values as a

group. The default changes based on whether or not you enter explicit values in

these tags, as follows:

- If no status flag in a group has an explicitly typed value, the default for all tags
in that group is “Y”.

- If any status flag in a group has an explicitly typed value, the default for the
remaining tags in the group is “N”.

The following example shows how you might code a request to list the full package promotion
history for all promotion sites where a “selective promote” or “selective demote” is the most
recent promotion action taken for a package. Data structure details follow in Exhibit 3-54.

Example XML — PACKAGE PRM_HIST LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PRM_HIST">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>IMSQO00012</package>
</request>
</message>

195

Chapter 3: Package Management

</scope>
</service>

Exhibit 3-54. PACKAGE PRM_HIST LIST <request> Data Structure

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<appIName>

Optional

0-1

String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

<firstPromotion>

Optional

0-1

String (1)

Y = Yes, include first promotes
N = No, omit first promotes

NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<fullDemotion>

Optional

String (1)

Y = Yes, include full demotes
N = No, omit full demotes

NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<fullPromotion>

Optional

String (1)

Y = Yes, include full promotes
N = No, omit full promotes

NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<jobBuilt>

Optional

String (1)

Y = Yes, include built jobs
N = No, omit built jobs

NOTE: Member of promotion status flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<jobCompleted>

Optional

String (1)

Y = Yes, include completed jobs
N = No, omit completed jobs

NOTE: Member of promotion status flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<jobFailed>

Optional

String (1)

Y = Yes, include failed jobs

N = No, omit failed jobs
NOTE: Member of promotion status flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

196

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-54. PACKAGE PRM_HIST LIST <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<jobSubmitted> Optional 0-1 String (1) Y = Yes, include submitted jobs
N = No, omit submitted jobs
NOTE: Member of promotion status flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.
<package> Required 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as last
fixed 6 bytes of <package>.
<promotionLevel> Optional 0-1 String (2), Numeric promotion level for which
variable promotion history is requested.
<promotionName> Optional 0-1 String (8), ZMF promotion level nickname for which
variable promotion history is requested.
NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk (*).
<promotionSiteName> Optional 0-1 String (8), ZMF name of promotion site for which
variable promotion history or status requested.
NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk (*).
NOTE: Omit tag or use asterisk (*)
wildcard to list all promotion sites,
regardless of request type.
<requestType> Optional 0-1 String (255, | Code for type of promotion history list
variable requested. Values:
1 = Full promotion history (default)
2 = Site promotion status
3 = Full promotion history, including site
locks.
<selectiveDemotion> Optional 0-1 String (1) Y = Yes, include selective demotes
N = No, omit selective demotes
NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.
<selectivePromotion> Optional 0-1 String (1) Y = Yes include selective promotes

N = No, omit selective promotes

NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

197

Chapter 3: Package Management

Exhibit 3-54. PACKAGE PRM_HIST LIST <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<siteLock> Optional 0-1 String (1) Y = site is locked
N = site is not locked

PACKAGE PRM_HIST LIST — Reply

The XML reply to a promotion history list request includes zero to many <result> tags. For
full promotion history lists (i.e., the value in <requestType>is “1”), each <result>
contains a package promotion or demotion record for a particular site and level. For
promotion site status lists (i.e., the value in <requestType> is “2”), each <result>
contains current package promotion status for a site.

Astandard <response> tag follows the last <result> tag, if any, to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. As the last tag returned in the reply message, the
<response> tag may serve as an end-of-list marker.

An example XML reply to a package promotion history list request appears below. Data
structure details for the <result> tag follow in Exhibit 3-55.

Example XML — PACKAGE PRM_HIST LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PRM_HIST">

<message name="LIST">

<result>
<package>IMSQO00012</package>
<applName>IMSQ</applName>
<packageld>000012</packageld>
<promotionSiteName>SERT8</promotionSiteName>
<promotionLevel>10</promotionLevel>
<promotionName>COO@1AUT</promotionName>
<promoter>USER24</promoter>
<promotionDate>20081019</promotionDate>
<promotionTime>201225</promotionTime>
<fullPromotion>Y</fullPromotion>
<fullDemotion>N</fullDemotion>
<selectivePromotion>N</selectivePromotion>
<selectiveDemotion>N</selectiveDemotion>
<firstPromotion>N</firstPromotion>
<jobSubmitted>N</jobSubmitted>
<jobCompleted>Y</jobCompleted>
<jobFailed>N</jobFailed>
<jobBuilt>N</jobBuilt>
<componentCount>0000020</componentCount>
</result>

<result>
<package>IMSQO00012</package>

198

<applName>IMSQ</applName>

<packageld>000012</packageld>
<promotionSiteName>SERT8</promotionSiteName>
<promotionLevel>10</promotionLevel>
<promotionName>COQ1AUT</promotionName>

<promoter>USER24</promoter>

ChangeMan® ZMF XML Services User's Guide

<promotionDate>20081019</promotionDate>
<promotionTime>201633</promotionTime>
<fullPromotion>N</fullPromotion>
<fullDemotion>Y</fullDemotion>
<selectivePromotion>N</selectivePromotion>
<selectiveDemotion>N</selectiveDemotion>
<firstPromotion>N</firstPromotion>
<jobSubmitted>N</jobSubmitted>
<jobCompleted>Y</jobCompleted>
<jobFailed>N</jobFailed>
<jobBuilt>N</jobBuilt>
<componentCount>0000019</componentCount>

</result>

<response>

<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>
</message>
</scope>
</service>

Exhibit 3-55. PACKAGE PRM_HIST LIST <result> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.
<componentCount> Optional 0-1 Integer (7), Number of components included in
variable promotion action.
<firstPromotion> Optional 0-1 String (1) Y = Yes, action is first promote
N = No, not first promote
<fullDemotion> Optional 0-1 String (1) Y = Yes, action is full demote
N = No, not full demote
<fullPromotion> Optional 0-1 String (1) Y = Yes, action is full promote
N = No, not full promote
<jobBuilt> Optional 0-1 String (1) Y = Yes, promotion job built

N = No, job not built

199

Chapter 3: Package Management

Exhibit 3-55. PACKAGE PRM_HIST LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<jobCompleted> Optional 0-1 String (1) Y = Yes, promotion job completed
N = No, job not completed
<jobFailed> Optional 0-1 String (1) Y = Yes, promotion job failed
N = No, job did not fail
<jobSubmitted> Optional 0-1 String (1) Y = Yes, promotion job submitted
N = No, job not submitted
<package> Optional 0-1 String (10), Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of <package>.
<promoter> Optional 0-1 String (8), TSO user ID of package promoter for
variable reported promotion action.
<promotionDate> Optional 0-1 Date, Date of reported promotion action.
yyyymmdd
<promotionLevel> Optional 0-1 String (2), Numeric promotion level for which
variable promotion action & status are reported.
<promotionName> Optional 0-1 String (8), ZMF nickname of promotion level for
variable which action & status are reported
<promotionSiteName> Optional 0-1 String (8), ZMF name of promotion site for which
variable promotion action & status are reported.
<promotionSuccessDate> Optional 0-1 Date, Date of successful promotion.
yyyymmdd
<promotionSuccessTime> Optional 0-1 Time, Time of successful promotion.
hhmms
<promotionTime> Optional 0-1 Time, Time of reported promotion action.
hhmmss
<selectiveDemotion> Optional 0-1 String (1) Y = Yes, action is selective demote
N = No, not selective demote
<selectivePromotion> Optional 0-1 String (1) Y = Yes, action is selective promote
N = No, not selective promote
<siteLock> Optional 0-1 String (1) Y = Site is locked.
N = Site is not locked.

Package Promoted Component List - PACKAGE PRM_CMP LIST

List the promotion history of all components in a named package using the Serena XML
component promotion history list. A promotion history list for the package as a whole requires
a different Serena XML function. (See List Package Promotion History - PACKAGE
PRM_HIST LIST.)

200

The Serena XML service/scope/message names for a component promotion history list are:

<service name="PACKAGE”>

<scope name="PRM_CMP”>
<message name="LIST”>

ChangeMan® ZMF XML Services User's Guide

These tags appear in both requests and replies.

PACKAGE PRM_CMP LIST — Request

This component promotion history function requests all component promotion history records
for a specific package at a specific promotion site and level. No further filtering options exist.

The following example shows how you might code a component promotion history request in

Serena XML. Data structure details follow the example in Exhibit 3-56.

Example XML — PACKAGE PRM_CMP LIST Request

<?xml version="1.0"?>

<service name="PACKAGE">

<scope name="PRM_CMP">

<message name="LIST">
<header>
<subsys>8</subsys>

<product>CMN</product>

</header>
<request>

<package>IMSQO00012</package>

<promotionSiteName>SERT8</promotionSiteName>
<promotionLevel>10</promotionLevel>

<promotionName>*</promotionName>
<shortSelectList>Y</shortSelectList>

</request>
</message>

</scope>
</service>

Exhibit 3-56. PACKAGE PRM_CMP LIST <request> Data Structure

Data Type

Subtag Use Occurs | & Length Values & Dependencies

<appIName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>

<package> Required 1 String (10), | Fixed-format ZMF package name.
variable

<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as last
fixed 6 bytes of <package>.

201

Chapter 3: Package Management

Exhibit 3-56. PACKAGE PRM_CMP LIST <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<promotionLevel> Required 1 Integer (2), | Numeric promotion level for which
variable promotion action & status are requested.
<promotionName> Required 1 String (8), ZMF nickname of promotion level for
variable which action & status are requested
<promotionSiteName> Required 1 String (8), ZMF name of promotion site for which
variable promotion action & status are requested.
<shortSelectList> Required 1 String (1) Y = Limit the selection list for selective

promotion to package components
that are not currently promoted to the
target level, including components that
may have been re-staged, newly
activated into the package, or overlaid
by promotion of another package.

N = Display all package components on
the selective promotion selection list.

PACKAGE PRM_CMP LIST — Reply

The reply message for the Serena XML component promotion history list function returns
zero to many <result> tags. Each <result> contains promotion action and status
information for one component in the named package at the named promotion site and level.
If no components have been promoted to that site and level, no <result> tags are returned.

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>
tag also serves as an end-of-list marker.

An example Serena XML reply to a component promotion history list request follows. Data
structure details for the <result> tag appear in Exhibit 3-57.

Example XML — Package Prm_Cmp List Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PRM_CMP">
<message name="LIST">
<result>
<package>IMSQO00012</package>
<applName>IMSQ</applName>
<packageld>000012</packageld>
<component>IM2Q101</component>
<componentType>DBB</componentType>
<stagedDate>20081019</stagedDate>
<stagedTime>200843</stagedTime>
<stager>USER24</stager>

202

ChangeMan® ZMF XML Services User's Guide

<componentStatus>0</componentStatus>
<promotionSiteName>SERT8</promotionSiteName>
<promotionName>CO@1AUT</promotionName>

<promotionLevel>10</promotionLevel>
<promoter>USER24</promoter>

<promotionDate>20081212</promotionDate>
<promotionTime>100135</promotionTime>
<isComponentRestaged>N</isComponentRestaged>
<cleanupComponent>N</cleanupComponent>

<isComponentOverlayed>N</isComponentOverlayed>

<isComponentDeleted>N</isComponentDeleted>

</result>

<response>

<statusMessage>CMN860OI - The Promotion list is complete.</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8600</statusReasonCode>

</response>
</message>
</scope>
</service>

Exhibit 3-57. PACKAGE PRM_CMP LIST <result>

variable

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF package ID number. Same as last
variable 6 bytes of <package>.
<cleanupComponent> Optional 0-1 String (1) Y = Yes, clean up component
N = No, don’t clean up
<component> Optional 0-1 String (256), | Name of component for which promotion

action and status are reported.

* If component is PDS member, this is
member name (max 8 bytes, no qualifi
ers).

* If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

203

Chapter 3: Package Management

Exhibit 3-57. PACKAGE PRM_CMP LIST <result> (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<componentStatus> Optional 0-1 String (1) Status code for listed component. Values:
0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen
<componentType> Optional 0-1 String (3), Library type for listed component.
variable
<isComponentDeleted> Optional 0-1 String (1) Y = Yes, component deleted
N = No, not deleted
<isComponentOverlayed> Optional 0-1 String (1) Y = Yes, component is overlaid
N = No, not overlaid
<isComponentRestaged> Optional 0-1 String (1) Y = Yes, component is restaged
N = No, not restaged
<package> Optional 0-1 String (10), Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), ZMF application name. Same as first
fixed 4 bytes of <package>.
<promoter> Optional 0-1 String (8), TSO user ID of component promoter.
variable
<promotionDate> Optional 0-1 Date, Date component promoted to this site
yyyymmdd and level.
<promotionLevel> Optional 0-1 Integer (2), Numeric promotion level for which
variable promotion action & status are reported.
<promotionName> Optional 0-1 String (8), ZMF nickname of promotion level for
variable which action & status are reported
<promotionSiteName> Optional 0-1 String (8), ZMF name of promotion site for which
variable promotion action & status are reported.
<promotionTime> Optional 0-1 Time, Time component promoted to this site
hhmmss and level, 24-hour format.
<stagedDate> Optional 0-1 Date, Date component staged.
yyyymmdd

204

ChangeMan® ZMF XML Services User's Guide

Exhibit 3-57. PACKAGE PRM_CMP LIST <result> (Continued)

Data Type

Subtag Use Occurs | & Length Values & Dependencies

<stagedTime> Optional 0-1 Time, Time component staged, 24-hour format.
hhmmss

<stager> Optional 0-1 String (8), TSO user ID of developer who staged
variable component.

List Reasons for Backout or Revert - PACKAGE REASONS LIST

The package reasons list function lists backout or revert reasons for a specific package.
The Serena XML service/scope/message tags for a package reasons list message are:

<service name="PACKAGE”>
<scope name="REASONS”>
<message name="LIST”>

These tags appear in both requests and replies.

PACKAGE REASONS LIST Requests

An example of how you might code a Serena XML request to list backout or revert reasons
appears below. Data structure details for the <request> tag appear in Exhibit 3-58.

Example XML — PACKAGE REASONS LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="REASONS">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000012</package>
</request>
</message>

205

Chapter 3: Package Management

</scope>
</service>

Exhibit 3-58. PACKAGE REASONS LIST <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> &
<packageld>.
<fromDate> Optional 0-1 Date, Start date in desired range of

yyyymmdd backout/revert dates.

<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6) ZMF package ID number. Same as

last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> &

<packageld>.
<reasonType Optional 0-1 String (1) Reason type:
B = Backout
R = Revert
<siteName> Optional 0-1 String (8), Site name.
variable
<toDate> Optional 0-1 Date, End date in desired range of

yyyymmdd backout/revert dates.

<updater> Optional 0-1 String (8) TSO user ID of last user to back out
or revert the package.

PACKAGE REASONS LIST — Reply

The reply message for the Serena XML package reasons list function returns zero to one
<result> tags. If there are no backout or revert reasons for the requested package, no
<result> tags are returned.

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

206

ChangeMan® ZMF XML Services User's Guide

An example Serena XML reply to a package reasons list request follows. Data structure
details for the <result> tag appear in Exhibit 3-59.

Example XML — Package Reasons List Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="REASONS">
<message name="LIST">
<result>
<package>ACTPOOOO12</package>
<applName>ACTP</applName>
<packageld>000012</packageld>
<reasonType>R</reasonType>
<siteName>SERT8</siteName>
<updater>USER109</updater>
<updateDate>20120718</updateDate>
<updateTime>073744</updateTime>
<reasons>reverted</reasons>
<reason@l>reverted</reason@1>
</result>
<response>
<statusMessage>CMN860OI - LIST Reasons service completed.</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8600</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 3-59. PACKAGE REASONS LIST <result> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
<package> Optional 0-1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6) ZMF package ID number. Same as
last 6 bytes of package name.
<reason01> Optional 0-1 String (72), Reason line - 1.
variable
<reason02> Optional 0-1 String (72), Reason line - 2.
variable
<reason03> Optional 0-1 String (72), Reason line - 3.
variable

207

Chapter 3: Package Management

208

Exhibit 3-59. PACKAGE REASONS LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<reason(04> Optional 0-1 String (72), Reason line - 4.
variable
<reason05> Optional 0-1 String (72), Reason line - 5.
variable
<reason06> Optional 0-1 String (72), Reason line - 6.
variable
<reasonQ7> Optional 0-1 String (72), Reason line - 7.
variable
<reason(08> Optional 0-1 String (72), Reason line - 8.
variable
<reason(09> Optional 0-1 String (72), Reason line - 9.
variable
<reasonType Optional 0-1 String (1) Reason type:
B = Backout
R = Revert
<reasons> Optional 0-9 String (72), Reasons lines 1 - 9.
variable NOTE: The <reasons> tag is
deprecated and contains the same
information as <reason01> --
<reason09>.
<siteName> Optional 0-1 String (8), Site name.
variable
<updateDate> Optional 0-1 Date, Date that the package was backed
yyyymmdd out or reverted.
<updateTime> Optional 0-1 Time, Time that the package was backed
hhmmss out or reverted.
<updater> Optional 0-1 String (8) TSO user ID of user who backed

out or reverted the package.

COMPONENT MANAGEMENT

Component management tasks supported by Serena XML fall into the following categories:

« Component Lifecycle Tasks — Development tasks that comprise or enable a
significant step in the component lifecycle. Typical commands are checkout, checkin,
browse, compare, build, recompile, relink, lock, unlock, scratch, and rename.

+ Count copybook names used by source (baseline I/A or package
records) — CMPONENT SRC_INCL COUNT — Control and information retrieval
tasks for multiple component versions maintained concurrently in the staging/
development library. Such commands include list and retrieve.

« Component Information Management Tasks — Tasks that retrieve or manage
descriptive metadata or control information about a component, such as component
descriptions or staging version change descriptions. Typical commands include list.

« Component Security Tasks — Tasks that validate or manage component access
security. Typical commands are check and list.

COMPONENT MANAGEMENT MESSAGE SYNTAX

Identifying Component Messages

All Serena XML component management messages have syntax that tells ChangeMan ZMF to
perform a task against a component rather than some other object. In all such messages, the
name attribute in the <service> takes the value “cmponent”, as follows:

<service name="CMPONENT" >

i

iy
S

Tip

Note the abbreviated spelling of “cmponent” in the name attribute! This value is
truncated because ChangeMan ZMF limits name attributes to eight bytes in length.

In addition, a component management task takes a value in the name attribute of the
<scope> tag that is consistent with work at the level of individual components. For example,
any Serena XML component message with a name attribute of “service” in the <scope>
tag is a component-only, component-level task. For example:

<service name="cmponent”>
<sCOpe name="service”>

209

Chapter 4: Component Management

210

Other purely component-level name attributes for the <scope> tag include “ssv_ver”,
“history”, “gen_desc”, “chg_desc”, and the like.

Component tasks performed at a higher level of aggregation — such as the package level —
indicate their higher-level scope in the <scope> tag. For example, attribute values such as

“pkg _src” or “pkg_lod” broaden the scale of a component management function to

include the components of an entire package as a group. At the same time, these attributes

exclude any shared components that reside in packages not named in the request. This

behavior classifies such requests as package-level component tasks rather than component-

only tasks — even though, for technical reasons, they are performed by the low-level
component service.

For the purposes of this manual, then, syntax such as the following identifies a package-level

component function rather than a component-only function:

<service name="CMPONENT”>
<sCcope name="PKG_SRC”>

Such tasks are discussed in the package management topic.

COMPONENT LIFECYCLE TASKS

The following component lifecycle tasks are supported by Serena XML for general use:

Check Out a Component - CMPONENT SER-
VICE CHECKOUT

Component Service Checkin - CMPONENT SER-
VICE CHECKIN

Check Designated Build Procedures - CMPO-
NENT APL_DPRC CHECK

Find Designated Build Procedure - CMPONENT
APL_DPRC FIND

List Designated Build Procedures - CMPONENT
APL_DPRC LIST

List Global Designated Build Procedures - CMPO-
NENT GBL_DPRC LIST

Component Service Build - CMPONENT SER-
VICE BUILD

Recompile a Component - CMPONENT SER-
VICE RECOMP

Count copybook names used by source (baseline
I/A or package records) — CMPONENT
SRC_INCL COUNT

List Copybook Names in Source - CMPONENT
SRC_INCL LIST

* Relink a Component - CMPONENT SERVICE
RELINK

» Browse a Component - CMPONENT SERVICE
BROWSE

* Compare Components - CMPONENT SERVICE
COMPARE

* Rename a Component - CMPONENT SERVICE
RENAME

Scratch a Component - CMPONENT SERVICE
SCRATCH

* Lock or Unlock a Component - CMPONENT SER-
VICE LOCK/UNLOCK

List Load Module Subroutines - CMPONENT
LOD_SUBR LISTt

List Copybook Names in Source - CMPONENT
SRC_INCL LIST

* List copybook names used by source (baseline I/
A or package records) — CMPONENT
SRC_INCL NOLOCATE

ChangeMan® ZMF XML Services User’s Guide

Check Out a Component - CMPONENT SERVICE CHECKOUT

The Serena XML service/scope/message tags and attributes for component checkout
messages are:

<service name="CMPONENT">
<scope name="SERVICE”>
<message name=""CHECKOUT”>

These tags appear in both requests and replies.

CMPONENT SERVICE CHECKOUT Requests

Serena XML permits concurrent checkout of one or many components. Checkout options
apply equally to all named components in the checkout request. For example, all components
must have the same library type, must be checked out from the same source (baseline or
promotion), and must be checked out to the same target (staging or a personal development
library).

The example below shows how you might code a checkout request in Serena XML. In this
example, a component is checked out from level 001 of the baseline library into a personal
library.

As in all XML examples in this manual, items in bold type are required. A selection of optional
subtags is shown in regular type. Nested subtags of a higher-level complex tag are indented
relative to that tag. Repeatable tags appear twice for illustration.

Data structure details for the component checkout <request> tag appear in Exhibit 4-1,
following the example.

Example XML — CMPONENT SERVICE CHECKOUT Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="CHECKOUT">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000003</package>
<componentType>CPY</componentType>
<chkOutSourceLocation>4</chkOutSourceLocation>
<chkOutMode>0</chkOutMode>
<basePromoLibLevel>001</basePromoLibLevel>
<chkOutTargetLocation>1</chkOutTargetLocation>
<personalLibStorageMeans>6</personallibStorageMeans>
<personalLib>USER24 . SETQUERY . WORKLOAD</personalLib>
<jobCard01>//XMLX029B JOB (RWM,T), 'DUMP',6 CLASS=A,MSGCLASS=A</jobCard01>
<jobCard02>//* JOBCARD2</jobCard02>

211

Chapter 4: Component Management

212

<jobCard03>//* JOBCARD3</jobCard03>
<jobCard04>//* JOBCARD4</jobCard04>
<listCount>0001</listCount>

<component>ACPCPY00</component>

</request>
</message>

</scope>

</service>

Exhibit 4-1. CMPONENT SERVICE CHECKOUT <request> Data Structure

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<applName>

Optional

0-1

String (4),
fixed

ZMF application name. Same as first 4
bytes of <package> tag.
NOTE: Trailing blanks required.

<basePromoLibLevel>

Required

Integer (3),
variable

Baseline or promotion library level from
which component is checked out.
Allowed values (must be positive):

» Baseline checkouts - 0to 99
* Promotion checkouts - 1 to 999

NOTES:

+ <chkOutSourcelLocation>
is required with this tag to determine
whether value is read as a “negative”
baseline level or a “positive” promo-
tion level.

If checkout is from baseline (that is, if
<chkOutSourcelLocation>
=4), default value is 0.

If baseline level for a checkout is not
zero, the checkout must be
performed in batch mode (that is, with
<chkOutMode> = B).

<chkOutMode>

Required

String (1),
fixed

Code for component checkout
processing mode. Valid values:

O = Online checkout (letter O)
B = Batch checkout

NOTES:

» Batch checkout required (value must
be B) if personal library for checkout
is Librarian or Panvalet (that is, if
<personallLibStorage-
Means> =4or5).

» Batch checkout required (value must
be B) if checking out from a backlevel
baseline (that is, if <basePro-
moLibLevel> is not zero and <chkOut-
SourcelLocation> = 4).

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-1. CMPONENT SERVICE CHECKOUT <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies

<chkOutSourceLocation> Required 1 String (1), Code for location component is
fixed checked out from. Valid values:

3 = Checkout from promotion
4 = Checkout from baseline

8 = ERO component Checkout from a
prior release

<chkOutTargetLocation> Required 1 String (1), Code for location component is
fixed checked out to. Valid values:

1 = Checkout to personal

development library
2 = Checkout to staging library

<component> Required 1-00 | String(256), | ZMF name of component to check out.
variable Repeatable to accommodate multi-
component checkouts.

* If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Number of instances must
equal value in the <1istCount>
tag.

<componentType> Required 1 String (3), Must be valid ZMF library type. Typical
fixed values:

+COB
CPY
«JCL

*SRC
*LOD

<jobCard01> Optional 0-1 String (72), | JCL statements needed to set job

. each fixed parameters, allocate data sets, & define
library concatenations during checkout.
: If used, all four tags are required. Tags
<jobCard04> not needed for JCL should be coded as
comment (//*).

NOTE: Required for batch checkout —
that is, if <chkOutMode> =B

<listCount> Required 1 Integer Number of components to be checked
out. Must equal the number of

<component > tags that follow.

<lockComponent> Optional 0-1 String (1), Y = Yes, lock after checkout
fixed N = No, don’t lock after checkout

213

Chapter 4: Component Management

214

Exhibit 4-1. CMPONENT SERVICE CHECKOUT <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<overlayPriorVersion> Optional 0-1 String (1), Y = Yes, overlay preexisting
fixed component copy in package
N = No, don’t overlay preexisting
component copy in package
NOTE: This tag affects the active
component copy currently residing in a
change package. It does NOT affect
any staged versions of that component
created by ZMF’s Save Staging
Versions (SSV) feature.
<package> Required 1 String (10), | Fixed-format name of ZMF package
fixed where component resides. First 4 bytes
correspond to <applName>. Final 6
bytes correspond to <packageId>.
NOTE: See ChangeMan ZMF User’s
Guide for format of package name.
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as last
fixed 6 bytes of <package> tag.
NOTE: Leading zeroes required.
<personalLib> Optional 0-1 String (44), | Name of personal development library
variable for component checkout.
NOTE: Required if checked out to
personal development library —that is, if
<chkQutTargetLocation>=
1.
<personalLibStorageMeans> | Optional 0-1 String (1), Code for data set organization of
fixed checkout target location. Values:

4 = CA-Librarian

5 = CA-Panvalet

6 = PDS

8 = Sequential

9 = PDSE

H = HFS
NOTE: Required if checked out to
personal development library —that is, if
<chkOutTargetLocation>=
1.

NOTE: If value is 4 or 5, batch checkout

required —that is, <ChkOutMode > =
B

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-1. CMPONENT SERVICE CHECKOUT <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<promotionSiteName> Optional 0-1 String (8), ZMF name of promotion site from which
variable component is checked out.
NOTE: Required if checked out from
promotion — that is, if value in
<chkOutSourcelocation>=
3.
<release> Optional 0-1 String (8), Name of ZMF release (ERO Option
variable only).
<releaseArea> Optional 0-1 String (8), Name of the ZMF release area (ERO
variable Option only).
<savePriorVersion> Optional 0-1 String (1), Y = Yes, save staging version
fixed of preexisting component
N = No, don’t save staging
version of preexisting component
NOTE: This tag applies only if ZMF's
Save Staging Versions (SSV) feature is
installed. It has no effect on whether or
not a component checked out from
baseline will overlay a preexisting copy
of that component in the package.
<suppressNotify> Optional 0-1 String (1), Y = Suppress batch notification
fixed N = Allow batch notification
<userVariable01> Optional 0-1 String (8), Five 8-byte custom user variables for
each variable component checkout established by
ZMF administrator.
<userVariable05>
<userVariable06> Optional 0-1 String (72), Five 72-byte custom user variables for
each variable component checkout established by
ZMF administrator.
<userVariable10>

iy
S

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

CMPONENT SERVICE CHECKOUT Replies

No <result> data structure is returned in the component checkout reply message.
However, the standard <response> data structure is returned to indicate the success or

215

Chapter 4: Component Management

216

failure of the checkout request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

Component Service Checkin - CMPONENT SERVICE CHECKIN

The Serena XML service/scope/message tags and attributes for component checkin
messages are:

<service name="CMPONENT”>
<scope name="SERVICE”>
<message name="CHECKIN”>

These tags appear in both requests and replies.
Batch Component Checkin Versus Online Component Staging

The Serena XML checkin function performs a subset of the “stage” functions of the ISPF user
interface. Check-in simply copies files from a development location into a staged change
package and updates the component status information — the first step of three in the
staging flow. Check-in does not compile or link-edit the checked-in component. Neither does
it log source-to-load and other relationships within a package or build any JCL install jobs.

By deferring many elements of the interactive “stage” function to a later time and a different
XML function, the checkin function gains the advantage of speed. Speed is vital for batch-
mode check-in requests that import a large number of components from other environments
to ChangeMan ZMF. Up to 9999 components can be checked in to a ChangeMan ZMF
change package via a single XML checkin request.

i

iy
S

Tip

Batch component checkin for a large number of components should be specified
in native Serena XML and submitted for execution via the SERXMLBC batch
execution client. (See Appendix B, “SERXMLBC — Executing Native XML Service
Calls.”) Source component name tags should be populated via a table-driven
preprocessing script or similar automated means if the number of components is very
large.

To complete the full “stage to development” process using Serena XML, the checkin function,
if successful, should be followed by an XML request to check designated build procedures,
which (if successful) should then be followed by an XML component build request. (See
“Check Designated Build Procedures - CMPONENT APL_DPRC CHECK” and “Component
Service Build - CMPONENT SERVICE BUILD” later in this chapter.)

CMPONENT SERVICE CHECKIN Requests

Serena XML permits concurrent checkin of one to many components. Checkin options apply
equally to all named components in the checkin request. For example, all components must
have the same library type, must be checked out from the same source location, and must be
checked in to the same package.

The example below shows how you might code a Serena XML request to check in a source
component from a personal library.

ChangeMan® ZMF XML Services User’s Guide

Data structure details for the component checkin <request> tag follow in Exhibit 4-2.

Example XML — CMPONENT SERVICE CHECKIN Request

<?xml version="1.0"7?>
<service name='"CMPONENT">
<scope name='"SERVICE">
<message name="CHECKIN">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000003</package>
<component>ACPCPY00</component>
<componentType>CPY</componentType>
<chkInSourcelocation>1</chkInSourceLocation>
<sourceStorageMeans>6</sourceStorageMeans>
<sourceLib>USER24 . SETQUERY . WORKLOAD</sourceLib>
<changeDesc>TEST CMPONENT SERVICE CHECKIN</changeDesc>
<listCount>0001</listCount>
<targetComponent>ACPCPY00</targetComponent>
</request>
</message>
</scope>
</service>

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first 4
fixed bytes of <package> tag.
NOTE: Trailing blanks required.
<changeDesc> Optional 1 String (35) Component change description to
include with all newly checked in
components.
<chkInSourcelLocation> Required 1 String (1) Code for location from which

component is checked in. Valid values:

1 = Checkin from development
dataset

5 = Checkin from package

7 = Checkin from a temporary
sequential dataset (for example,
using ZDD Checkin)

E = Edit from package library

217

Chapter 4: Component Management

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<component>

Optional

0-1

String (256),
variable

Source component name.

* If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: If checking in from a sequential
file, this tag is required.

<componentType>

Required

String (3)

Library type to assign to checked-in
component(s). Must be valid ZMF
library type. Typical values:

+COB
CPY
+JCL

*SRC
LOD

<listCount>

Required

Integer

Number of components to be checked
in. Must immediately precede the first of
one or more
<targetComponent> tags.
Value must equal the number of
<targetComponent> tags that
follow.

<lockAfterChkin>

Optional

String (1)

Y = Yes, lock component after
checkin

N = No, don’t lock component after
check in

<package>

Required

String (10)

ZMF fixed-format package name where
component should reside.

<packageld>

Optional

Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package> tag.
NOTE: Leading zeroes required.

<savePriorStagingVersion>

Optional

String (1)

Y = Yes, create staging version
of preexisting component
(if staging versions enabled)
N = No, don’t create a staging
version of component

<sourcelLib>

Optional

String (44)

Data set name of library holding
component(s) to check in.

NOTE: For HFS component, path and
subdirectory where component resides.

218

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<sourceStorageMeans>

Optional

0-1

String (1)

Code for data set organization of
checkout target location. Values:

4 = CA-Librarian

5 = CA-Panvalet

6 = PDS

8 = Sequential data set

9 = PDS/Extended

H=HFS

<suppressNotify>

Optional

String (1)

Y = Yes, suppress notify messages
N = No, don’t suppress notify
messages

<targetComponent>

Required

String (256),
variable

ZMF name of component to check in.
Repeatable for multiple concurrent
check-ins. Must be preceded by
<listCount> tag.

NOTE: Number of instances must
equal value in <1istCount>.

NOTE: HFS components must also
designate a target subdirectory for
checkin in
<targetSubDirectory>.For
HFS components, all instances must
belong to the same subdirectory.

<targetSubDirectory>

Optional

String (256),
variable

Name of the target HFS subdirectory
where components are to be checked
in, prefixed by path from installation root
(that is, path as it is defined in the
baseline library).

NOTE: Required for HFS component if
<useSourcelLibSubDirecto
ry>=N.

NOTE: Only one subdirectory is

supported per request. For bulk
checkins, all
<targetComponent> tagsmust
contain components that belong in the
same subdirectory.

<userOption01>

<userOption20>

Optional

0-1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 01 to 20 on
the ISPF user options panel for
component build.

<userOption0101>

<userOption0105>

Optional

0-1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

219

Chapter 4: Component Management

220

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<userOption0201>

<userOption0203>

Optional

0-1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

<userOption0301>

<userOption0303>

Optional

0-1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

<userOption0401>

<userOption0403>

Optional

0-1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

<userOption0801>

<userOption0805>

Optional

0-1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

<userOption1001>

<userOption1002>

Optional

0-1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

<userOption1601>

<userOption1602>

Optional

0-1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1602 on the ISPF user options panel for
component build.

<userOption3401>

<userOption3402>

Optional

0-1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

<userOption4401>

<userOption4402>

Optional

0-1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel for
component build.

<userOption6401>

<userOption6405>

Optional

0-1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel for
component build.

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure (Continued)

Data Type

Subtag Use Occurs | & Length Values & Dependencies
<userOption7201> Optional 0-1 String (72), | Administrator-defined build options

. each variable assigned to component. Each tag

corresponds to User Option 7201 to

. 7205 on the ISPF user options panel for
<userOption7205> component build.
<useSourceLibSubDirectory> | Optional 0-1 String (1) Should target subdirectory & path

match source library directory & path?

Y = Use value in <sourcelLib>
for

<targetSubDirectory>.

N = Do not use <sourcelLib>
for

<targetSubDirectory>;
supply explicit value instead.
NOTE:
<targetSubDirectory>is
required if value is N.

Component Service Checkin Reply

No <result> data structure is returned in the component checkin reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
checkin request. Successful requests have a return code of 00. Unsuccessful requests have
a return code of 04 or higher.

Check Designated Build Procedures - CMPONENT APL_DPRC CHECK

The Serena XML service/scope/message tags and attributes for a message to check
designated component build procedures are:

<service name="CMPONENT”>
<scope name="APL_DPRC">
<message name=""CHECK”>

The Serena XML check function performs a subset of the “stage” functions of the ISPF user
interface. It checks for the existence of designated build procedures associated with a
checked-in component — the second step of three in the staging flow. It does not copy files
from a development location into a staged change package. It does not compile or link the
checked-in component. Neither does it log source-to-load relationships within a package or
build any JCL install jobs.

221

Chapter 4: Component Management

222

iy
S

Tip

To complete the full “stage to development” cycle using Serena XML, first check in the
affected component using checkin function. If check-in is successful, followed it with
an XML request to check designated build procedures, which (if successful) should
then be followed by an XML component build request. (See “Check Designated Build
Procedures - CMPONENT APL_DPRC CHECK” and “Component Service Build -
CMPONENT SERVICE BUILD” later in this chapter.)

CMPONENT APL_DPRC CHECK — Requests

The Serena XML example below shows how you might code a request to check designated
component build procedures. Note that you can check build procedures for only one
component per request. Data structure details for the <request> tag appear in Exhibit 4-3.

Example XML — CMPONENT APL_DPRC CHECK Request

<?xml version="1.0"?>
<service name='"CMPONENT">
<scope name="APL_ DPRC">
<message name="CHECK">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<component>ACPSRS00</component>
<componentType>SRS</componentType>
<applName>ACTP</applName>
<buildProc>CMNCOB2</buildProc>
<language>COBOL2</language>
<useDb2PreCompileOption>N</useDb2PreCompileOption>
</request>
</message>
</scope>
</service>

Exhibit 4-3. Check Component Designated Build Procedures <request>

Data Type &
Subtag Use Instances Length Values
<appIlName> Required 0-1 String (4), ZMF application name. Same as first 4
fixed bytes of <package> tag.
NOTE: Trailing blanks required.
<buildProc> Required 0-1 String (8), ZMF name for designated build
variable procedure.

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-3. Check Component Designated Build Procedures <request> (Continued)

Data Type &

Subtag Use Instances Length Values

<compileOptions> Optional 0-1 String (34), Custom compile parameters for named
variable component.

<component> Required 1 String (256), | ZMF name of component to be
variable checked.

* If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3), Library type of component named in
fixed <component>. Must be valid ZMF
library type of “like-source.” Typical
values:
+COB
CPY
*SRC
<language> Required 0-1 String (8), Source language of component.
variable
<linkOptions> Optional 0-1 String (34), Custom link-edit parameters for named
variable component.
<useDb2PreCompileOptio | Required 0-1 String (1) Y = Yes, use DB2 precompile
n> N = No, don’t precompile DB2
<userOption01> Optional 0-1 String (1) Administrator-defined build options
each assigned to component. Each tag
corresponds to User Option 01 to 20
. on the ISPF user options panel for
<userOption20> component build.
<userOption0101> Optional 0-1 String (1), Administrator-defined build options
each variable assigned to component. Each tag
corresponds to User Option 0101 to
. 0105 on the ISPF user options panel
<userOption0105> for component build.
<userOption0201> Optional 0-1 String (2), Administrator-defined build options
each variable assigned to component. Each tag
corresponds to User Option 0201 to
. 0203 on the ISPF user options panel
<userOption0203> for component build.
<userOption0301> Optional 0-1 String (3), Administrator-defined build options
. each variable assigned to component. Each tag
corresponds to User Option 0301 to
. 0303 on the ISPF user options panel
<userOption0303> for component build.

223

Chapter 4: Component Management

224

Exhibit 4-3. Check Component Designated Build Procedures <request> (Continued)

Subtag

Use

Instances

Data Type &
Length

Values

<userOption0401>

<userOption0403>

Optional

0-1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel
for component build.

<userOption0801>

<userOption0805>

Optional

0-1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel
for component build.

<userOption1001>

<userOption1002>

Optional

0-1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel
for component build.

<userOption1601>

<userOption1602>

Optional

0-1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel
for component build.

<userOption3401>

<userOption3402>

Optional

0-1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel
for component build.

<userOption4401>

<userOption4402>

Optional

0-1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel
for component build.

<userOption6401>

<userOption6405>

Optional

0-1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel
for component build.

<userOption7201>

<userOption7205>

Optional

0-1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel
for component build.

ChangeMan® ZMF XML Services User’s Guide

iy
S

Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the
ChangeMan ZMF Customization Guide.

Check Component Designated Build Procedures — Replies

No <result> data structure is returned in the reply message to a check component
designated procedures request. However, the standard <response> data structure is
returned to indicate the success or failure of the check. In general, the following rules of
thumb apply to return codes for the designated build procedure check:

* 00 - Request successful and designated build procedures found.
* 04 - Informational message; designated build procedures not found.
* 08 or higher — Failure to execute request.

Find Designated Build Procedure - CMPONENT APL_DPRC FIND

The Serena XML service/scope/message tags and attributes for messages to find a
component’s designated build procedure are:

<service name="CMPONENT”>
<scope name="APL_DPRC”>
<message name="FIND”>

These tags appear in both requests and replies.

CMPONENT APL_DPRC FIND — Requests

The Serena XML request to find the designated component build procedure retrieves detailed
information from the component history file for a specific component. Data structure details
for CMPONENT APL_DPRC FIND request are shown in Exhibit 4-4.

225

Chapter 4: Component Management

226

Exhibit 4-4. CMPONENT APL_DPRC FIND <request>

\

Data Type &

Subtag Use Instances Length Values

<appIName> Required 0-1 String (4), ZMF application name. Same as first 4
fixed bytes of <package> tag.

NOTE: Trailing blanks required.

<component> Required 0-1 String (256), | ZMF component for which to find the
variable designated build procedure.

* If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3), ZMF library type of component(s) for
fixed which to list designated build

procedures. Must be “like-source.”
Typical values:
+COB

CPY
*SRC

CMPONENT APL_DPRC FIND — Replies

The reply message returns zero or one result tag, detailing the procedure if it exists. The reply
data structure is the same as that for CMPONENT APL_DPRC LIST and is described in

Exhibit 4-6.

List Designated Build Procedures - CMPONENT APL_DPRC LIST

The Serena XML service/scope/message tags and attributes for messages to list designated
component build procedures at the application level are:

<service name="CMPONENT”>
<scope name="APL_DPRC”>
<message name="LIST”>

These tags appear in both requests and replies.

CMPONENT APL_DPRC LIST — Requests

The Serena XML request to list designated component build procedures retrieves detailed
information from the component history file about all such procedures for any of the following:

* One explicitly named component.
* All components of the same type.

* Any components with names that match a wildcard pattern.

ChangeMan® ZMF XML Services User’s Guide

The Serena XML example below shows how you might code a request to list designated
component build procedures for all components of type “SRS”. The request to list designated
component build procedures also supports wildcards and patterns. Data structure details for
the <request> tag appear in Exhibit 4-5.

Example XML — CMPONENT APL_DPRC LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="APL_ DPRC">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<applName>ACTP</applName>
<component>*</component>
<componentType>SRS</componentType>
</request>
</message>
</scope>
</service>

Exhibit 4-5. CMPONENT APL_DPRC LIST <request>

Data Type &
Subtag Use Instances | Length Values
<appIlName> Required 0-1 String (4), ZMF application name. Same as first 4
fixed bytes of <package> tag.
NOTE: Trailing blanks required.
<component> Required 0-1 String (256), | ZMF component for which to list
variable designated build procedures.

* If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: May be masked using standard
wildcard characters.

227

Chapter 4: Component Management

228

Exhibit 4-5. CMPONENT APL_DPRC LIST <request> (Continued)

Data Type &
Subtag Use Instances Length Values
<componentType> Optional 1 String (3), ZMF library type of component(s) for
fixed which to list designated build
procedures. Must be “like-source.”
Typical values:
+COB
CPY
*SRC
<exactMatch> Optional 0-1 String (1) Y = Yes- exact match no filtering
N = No - use filtering

CMPONENT APL_DPRC LIST — Replies

The reply message listing designated component build procedures returns zero to many

<result> data elements. Each <result> tag contains information about one component,
taken from the component history file. This information includes component name and type,
build procedure name, component source language, compile and link options, and the like.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT APL_DPRC LIST Reply

<?xml version="1.0"?>

<service name="CMPONENT">
<scope name="APL_ DPRC">
<message name="LIST">

<result>

<component>ACPSRS00</component>

<componentType>SRS</componentType>

<applName>ACTP</applName>
<buildProc>CMNCOB2</buildProc>
<language>COBOL2</language>
<useDb2PreCompileOption>N</useDb2PreCompileOption>
<forceAssignedBuildProc>2</forceAssignedBuildProc>

</result>
<response>

<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>

</message>
</scope>
</service>

ChangeMan® ZMF XML Services User’s Guide

Data structure details for the <result> tag appear in Exhibit 4-6.

Exhibit 4-6. CMPONENT APL_DPRC LIST <result>

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
fixed bytes of <package> tag.
NOTE: Trailing blanks required.
<buildProc> Optional 0-1 String (8), ZMF name for designated build
variable procedure.
<compileOptions> Optional 0-1 String (34), | Custom compile parameters for
variable named component.
<component> Optional 0-1 String (256), | ZMF component name.
variable « If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3), ZMF library type of component.
variable
<forceAssignedBuildProc> Optional 0-1 String (1) Force level for enforcement of
designated build procedure with this
component. Values:
1 = Force before freeze only
2 = Always force
<language> Optional 0-1 String (8), Source language of component.
variable
<linkOptions> Optional 0-1 String (34), | Custom link-edit parameters for
variable named component.
<useDb2PreCompileOption> Required 0-1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile DB2
<userOption01> Optional 0-1 String (1) Administrator-defined build options
each assigned to component. Each tag
corresponds to User Option 01 to 20
. on the ISPF user options panel for
<userOption20> component build.
<userOption0101> Optional 0-1 String (1), Administrator-defined build options
each variable assigned to component. Each tag
corresponds to User Option 0101 to
. 0105 on the ISPF user options panel
<userOption0105> for component build.

229

Chapter 4: Component Management

230

Exhibit 4-6. CMPONENT APL_DPRC LIST <result> (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<userOption0201>

<userOption0203>

Optional

0-1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel
for component build.

<userOption0301>

<userOption0303>

Optional

0-1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel
for component build.

<userOption0401>

<userOption0403>

Optional

0-1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel
for component build.

<userOption0801>

<userOption0805>

Optional

0-1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel
for component build.

<userOption1001>

<userOption1002>

Optional

0-1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel
for component build.

<userOption1601>

<userOption1602>

Optional

0-1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel
for component build.

<userOption3401>

<userOption3402>

Optional

0-1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel
for component build.

<userOption4401>

<userOption4402>

Optional

0-1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel
for component build.

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-6. CMPONENT APL_DPRC LIST <result> (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<userOption6401> Optional 0-1 String (64), | Administrator-defined build options
. each variable assigned to component. Each tag
corresponds to User Option 6401 to
. 6405 on the ISPF user options panel
<userOption6405> for component build.
<userOption7201> Optional 0-1 String (72), | Administrator-defined build options
each variable assigned to component. Each tag
corresponds to User Option 7201 to
. 7205 on the ISPF user options panel
<userOption7205> for component build.

iy
S

Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the
ChangeMan ZMF Customization Guide.

List Global Designated Build Procedures - CMPONENT GBL_DPRC
LIST

The Serena XML service/scope/message tags and attributes for messages to list designated
component build procedures at the global level are:

<service name="CMPONENT”>
<scope name="GBL_DPRC">
<message name="LIST”>

These tags appear in both requests and replies.

The CMPONENT GBL_DPRC LIST service is identical to the CMPONENT APL_DPRC LIST
service except that the <appl_Name> tag is omitted. Refer to “List Designated Build
Procedures - CMPONENT APL_DPRC LIST” on page 226.

Component Service Build - CMPONENT SERVICE BUILD

The Serena XML service/scope/message tags and attributes for component build messages
are:

<service name="CMPONENT"”>
<scope name="SERVICE”>
<message name="BUILD”>

These tags appear in both requests and replies.

The Serena XML component build function performs a subset of the “stage” functions of the
ISPF user interface. It compiles (or assembles) and link-edits a package component; logs
source-to-load and other relationships between modules within a package; and builds any
JCL install jobs. Together these comprise the third step of three in the staging flow. The

231

Chapter 4: Component Management

component build function does not copy files from a development location into a staged
change package. Neither does it check for the existence of designated build procedures
associated with a checked-in component.

i

iy
S

Tip

To perform the full “stage to development” process using Serena XML, start with
the check in function. If successful, follow check-in with an XML request to check
designated build procedures. If this, too, is successful, submit a Serena XML request
to build the component. (See “Component Service Checkin - CMPONENT SERVICE
CHECKIN” and “Check Designated Build Procedures - CMPONENT APL_DPRC
CHECK?” earlier in this chapter.)

CMPONENT SERVICE BUILD Request
The following example shows how you might code a build request with Serena XML. Data

structure details for the component service build <reques t> tag follow the example in
Exhibit 4-7.

Example XML — CMPONENT SERVICE BUILD Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="BUILD">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000001</package>
<componentType>SRS</componentType>
<buildProc>CMNCOB2</buildProc>
<language>COBOL2</language>
<jobCard01>//XMLX029B JOB (RWM,T), 'DUMP',6 CLASS=A,MSGCLASS=A</jobCard01>
<jobCard02>//* JOBCARD2</jobCard02>
<jobCard03>//* JOBCARD3</jobCard03>
<jobCard04>//* JOBCARD4</jobCard04>
<listCount>001</listCount>
<component>ACPSRS00</component>
</request>
</message>
</scope>
</service>

232

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-7. CMPONENT SERVICE BUILD <request> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
fixed bytes of <package> tag.

NOTE: Trailing blanks required.

<buildProc> Optional 0-1 String (8), 8-byte ZMF name for designated build
variable procedure.

<compileOptions> Optional 0-1 String (34), Compile parameters not set elsewhere
variable (e.g. in component history) or by default.

NOTE: The <useHistory> tag must be

set to N to use this tag.

<component> Required 1-00 | String(256), | ZMF name of component to build.
variable Repeatable to accommodate multiple
components.

* If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Number of instances must equal

the value in the <1istCount> tag.

<componentType> Required 1 String (3), Library type of all component(s) to be
fixed built. Must be valid ZMF library type of

“like-source.” Typical values:
+COB
*CPY
*SRC

<db2PreCompileLinkLib> Optional 0-1 String (44), Data set name of DB2 library to be used
variable in build process.

NOTE: The <useHistory> tag must be

set to N to use this tag.

<db2PreCompileVersion> Optional 0-1 String (64), DB2 DBRM version to use when
variable building components.

NOTE: The <useHistory> tag must be

set to N to use this tag.

<db2SubSystemld> Optional 0-1 String (4), 4-byte physical subsystem ID of DB2
variable instance to use in build.

NOTE: The <useHistory> tag must be

set to N to use this tag.

<incrementJobname> Optional 0-1 String (1) Y = Yes, increment the job name
N = No, don’t increment the job name
<inputDataset> Optional 0-1 String (44), Data set name of staging library where
variable like-source component(s) reside(s).

233

Chapter 4: Component Management

234

Exhibit 4-7. CMPONENT SERVICE BUILD <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<jobCard01> Required 0-1, String (72), | JCL statements needed to set job
. each variable parameters, allocate data sets, & define
library concatenations. If used, all four
. are required. Tags not needed for JCL
<jobCard04> should be coded as comment (//*).
<language> Optional 0-1 String (8), Source language of component(s) to be
variable compiled. Max 8 bytes.
<linkOptions> Optional 0-1 String (34), Link edit parameters not set elsewhere
variable (e.g. in component history) or by default.
NOTE: The <useHistory> tag must be
set to N to use this tag.
<listCount> Required 1 Integer Number of components to be checked
out. Must equal the number of
<component> tags that follow.
<package> Required 1 String (10), | ZMF fixed-format package name where
variable component(s) reside(s).
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.
NOTE: Leading zeroes required.
<sourcelocation> Optional 0-1 String (1) This tag is used when staging “like type”
OTH components from remote clients.
Specify the value “7” to indicate that the
build source dataset is a temporary
dataset and will be deleted when the
build process is completed.
CAUTION! Do not use this tag unless
you are sure you want to delete the
input dataset.
<suppressNotify> Optional 0-1 String (1) Y = Yes, suppress notify messages
N = No, don’t suppress messages
<useDb2PreCompileOption> | Optional 0-1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile DB2
NOTE: The <useHistory> tag must be
set to N to use this tag.
<useHistory> Optional 0-1 String (1) Y = Yes, use comp hist for compile

params (default)
N = No, don’t use comp history

NOTE: This tag must be set to N to use
the <useDb2PreCompileOption>,
<compileOptions>, <linkOptions>,
<db2SubSystemld>,
<db2PreCompileLinkLib>, and
<db2PreCompileVersion> tags.

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-7. CMPONENT SERVICE BUILD <request> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<userOption01>

<userOption20>

Optional

0-1,
each

String (1)

Administrator-defined 1-byte user option
variables.

NOTE: See your ZMF application
administrator for information.

<userOption0101>

<userOption0105>

Optional

0-1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

<userOption0201>

<userOption0203>

Optional

0-1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

<userOption0301>

<userOption0303>

Optional

0-1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

<userOption0401>

<userOption0403>

Optional

0-1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

<userOption0801>

<userOption0805>

Optional

0-1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

<userOption1001>

<userOption1002>

Optional

0-1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

<userOption1601>

<userOption1602>

Optional

0-1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel for
component build.

<userOption3401>

<userOption3402>

Optional

0-1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

235

Chapter 4: Component Management

236

Exhibit 4-7. CMPONENT SERVICE BUILD <request> Data Structure (Continued)

<userVariable10>

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<userOption4401> Optional 0-1 String (44), | Administrator-defined build options
each variable assigned to component. Each tag
corresponds to User Option 4401 to

. 4402 on the ISPF user options panel for
<userOption4402> component build.
<userOption6401> Optional 0-1 String (64), | Administrator-defined build options

. each variable assigned to component. Each tag

corresponds to User Option 6401 to

. 6405 on the ISPF user options panel for
<userOption6405> component build.
<userOption7201> Optional 0-1 String (72), | Administrator-defined build options

. each variable assigned to component. Each tag

corresponds to User Option 7201 to

. 7205 on the ISPF user options panel for
<userOption7205> component build.
<userOptionsPart1> Optional 0-1 String (10), | Administrator-defined component user

variable variables.
<userOptionsPart2> Optional 0-1 String (10), | Administrator-defined component user
variable variables.
<userPanel> Optional 0-1 String (8), User panel ID.
variable
<userVariable01> Optional 0-1, String (8), Administrator-defined 8-byte user
each variable variables, if any, for use with customized
skeletons during build.

:) NOTE: See your ZMF application
<userVariable05> administrator for information.
<userVariable06> Optional 0-1, String (72), | Administrator-defined 72-byte user

each variable variables, if any, for use with customized

skeletons during build.

NOTE: See your ZMF application
administrator for information.

iy
S

Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the

ChangeMan ZMF Customization Guide.

CMPONENT SERVICE BUILD Replies

No <result> data structure is returned in the component build reply message. However, the
standard <response> data structure is returned to indicate the success or failure of the build
request. Successful requests have a return code of 00. Unsuccessful requests have a return

code of 04 or higher.

ChangeMan® ZMF XML Services User’s Guide

i

iy
S

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

Recompile a Component - CMPONENT SERVICE RECOMP

The Serena XML service/scope/message tags and attributes for component recompile
messages are:

<service name="CMPONENT”" >
<scope name="SERVICE”>
<message name="RECOMP”>

These tags appear in both requests and replies.

CMPONENT SERVICE RECOMP Requests

Unlike the component check-in and check-out functions described above, the component
recompile function works on only one component per request message. It performs only one
task: compilation (or assembly) of the named component.

Note

The component recompile function does not link-edit the named component.
That task can be performed on a standalone basis using the Serena XML relink
function, described later in this chapter.

The Serena XML example below shows how you might code a request to recompile a
component from baseline. For illustration, the example requests a DB2 precompile. Note that
DB2-related tags apply only to customers who install the ChangeMan ZMF DB2 Option.
Administrator-defined user options and variables with hypothetical values also appear in the
example. Check with your ChangeMan ZMF administrator for further information about
custom user variables for components. They may not apply to your installation.

Data structure details for the recompile <request> tag appear in Exhibit 4-8.

Example XML — CMPONENT SERVICE RECOMP Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="RECOMP">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000001</package>

237

Chapter 4: Component Management

<componentType>SRS</componentType>
<jobCard01>//XMLX034 JOB (RWM,T), 'DUMP',CLASS=A,MSGCLASS=A,REGION=0M</
jobCard01>
<1listCount>0001</listCount>
<component>ACPSRS1B</component>
<language>COBOL2</language>
<buildProc>CMNCOB2</buildproc>
</request>
</message>
</scope>
</service>

Exhibit 4-8. CMPONENT SERVICE RECOMP <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.

NOTE: OK to omit trailing blanks.

<buildProc> Optional 0-1 String (8), 8-byte ZMF name for designated build
variable procedure.
<compileOptions> Optional 0-1 String (34), Compile parameters not set elsewhere
variable (e.g. in component history) or by
default.
<component> Required 1 String (256), | ZMF name of component to recompile.
variable « If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

« If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3), ZMF “like-source” library type of
fixed component to be recompiled. Typical
values:
+COB
CPY
*SRC
<db2PreCompileLinkLib> Optional 0-1 String (44), Data set name of DB2 library to be used
variable in build process.
<db2PreCompileVersion> Optional 0-1 String (64), DB2 DBRM version to use when
variable recompiling components.
<db2SubSysteml|d> Optional 0-1 String (4), Physical subsystem ID of DB2 instance
variable to use in build.
<jobCard01> Required 1 String (72) JCL statements needed to set job
<jobCard02> Optional 0-1 String (72) parameters, allocate data sets, & define
. . . library concatenations. <jobCard01> is
<jobCard03> Optional 0-1 String (72) required. Tags not needed for JCL may
<jobCard04> Optional 0-1 String (72) be omitted.

238

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-8. CMPONENT SERVICE RECOMP <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<language> Optional 0-1 String (8), Source language of component(s) to be
variable compiled. If omitted, ZMF retrieves from
component history.
<libLevel> Optional 1 String (2), Numeric library level of source code to
variable recompile. Values:
0 = Baseline library
1 to 99 = Promotion library
NOTE: <promotionSiteName>
tag also required if value > 0.
<linkOptions> Optional 0-1 String (34), Link edit parameters not set elsewhere
variable (e.g. in component history) or by
default.
NOTE: The <useHistory> tag must be
set to N to use this tag.
<listCount> Optional 0-1 Integer Number of components to be
recompiled.
<lockComponent> Optional 0-1 String (1) Y = Yes, lock after recompile
N = No, don’t lock component
<overlayPriorVersion> Optional 0-1 String (1) Y = Yes, overlay load module
in staging library
N = No, don’t overlay
<package> Required 1 String (10), ZMF fixed-format package name where
variable component resides.
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.
NOTE: Leading zeroes required.
<promotionSiteName> Optional 0-1 String (8), ZMF promotion library site name.
variable NOTE: f<libLevel>=1to099, this
tag is required.
<release> Optional 0-1 String (8), Name of ZMF release (ERO Option
variable only).
<releaseArea> Optional 0-1 String (8), Name of the ZMF release area (ERO
variable Option only).
<suppressNotify> Optional 0-1 String (1) Y = Yes, suppress notify messages
N = No, don’t suppress messages
<useDb2PreCompileOption> | Optional 0-1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile DB2

239

Chapter 4: Component Management

240

Exhibit 4-8. CMPONENT SERVICE RECOMP <request> Data Structure (Continued)

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<useHistory>

Optional

0-1

String (1)

Y = Yes, use comp hist for compile
params (default)
N = No, don’t use comp history

NOTE: This tag must be set to N to use
the <useDb2PreCompileOption>,
<compileOptions>, <linkOptions>,
<db2SubSystemId>,
<db2PreCompileLinkLib>, and
<db2PreCompileVersion> tags.

<userOption01>

<userOption20>

Optional

0-1,
each

String (1)

Administrator-defined 1-byte user
option variables.

NOTE: See your ZMF application
administrator for information.

<userOption0101>

<userOption0105>

Optional

0-1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

<userOption0201>

<userOption0203>

Optional

0-1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

<userOption0301>

<userOption0303>

Optional

0-1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

<userOption0401>

<userOption0403>

Optional

0-1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

<userOption0801>

<userOption0805>

Optional

0-1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

<userOption1001>

<userOption1002>

Optional

0-1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-8. CMPONENT SERVICE RECOMP <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<userOption1601> Optional 0-1 String (16), Administrator-defined build options
each variable assigned to component. Each tag
corresponds to User Option 1601 to
. 1603 on the ISPF user options panel for
<userOption1602> component build.
<userOption3401> Optional 0-1 String (34), Administrator-defined build options
. each variable assigned to component. Each tag
corresponds to User Option 3401 to
. 3402 on the ISPF user options panel for
<userOption3402> component build.
<userOption4401> Optional 0-1 String (44), Administrator-defined build options
. each variable assigned to component. Each tag
corresponds to User Option 4401 to
. 4402 on the ISPF user options panel for
<userOption4402> component build.
<userOption6401> Optional 0-1 String (64), Administrator-defined build options
each variable assigned to component. Each tag
corresponds to User Option 6401 to
. 6405 on the ISPF user options panel for
<userOption6405> component build.
<userOption7201> Optional 0-1 String (72), Administrator-defined build options
each variable assigned to component. Each tag
corresponds to User Option 7201 to
. 7205 on the ISPF user options panel for
<userOption7205> component build.
<userOptionsPart1> Optional 0-1 String (10), Administrator-defined component user
variable variables.
<userOptionsPart2> Optional 0-1 String (10), Administrator-defined component user
variable variables.
<userPanel> Optional 0-1 String (8), User panel ID.
variable
<userVariable01> Optional 0-1 String (8), Administrator-defined 8-byte user
variable variables for recompile.
<userVariable05>
<userVariable06> Optional 0-1 String (72), Administrator-defined 72-byte user
variable variables, if any, for use with recompile.

<userVariable10>

241

Chapter 4: Component Management

242

iy
S

Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the
ChangeMan ZMF Customization Guide.

CMPONENT SERVICE RECOMP Replies

No <result> data structure is returned in the component recompile reply message.
However, the standard <response> data structure is returned to indicate the success or
failure of the recompile request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

i

iy
S

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

Relink a Component - CMPONENT SERVICE RELINK

The Serena XML service/scope/message tags and attributes for component relink messages
are:

<service name="CMPONENT”>
<scope name="SERVICE”>
<message name="RELINK”>

These tags appear in both requests and replies.

CMPONENT SERVICE RELINK Requests

The component relink function, like the component recompile function, works on only one
component per request message. It performs only one task: link-editing the named
component. Prior compilation is assumed.

Note

The component relink function does not compile the named component or
change the source code in any way. Compilation (or assembly) can be performed
on a standalone basis using the Serena XML recompile function, described
earlier in this chapter.

The example below shows how you might code a request to relink a component in Serena
XML. Data structure details for the recompile <request > tag appear in Exhibit 4-9.

ChangeMan® ZMF XML Services User’s Guide

Example XML — CMPONENT SERVICE RELINK Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="RELINK">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>

<package>ACTP000014</package>
<component>ACPSRS00</component>

<componentType>LOS</componentType>

<targetLoadLibType>LOD</targetLoadLibType>
<buildProc>CMNCOB2</buildProc>
<language>COBOL2</language>
<1linkOptions>NCAL</linkOptions>
<useDb2PreCompileOption>N</useDb2PreCompileOption>
<jobCard01>//XMLX035 JOB (AMW,000),'DEFINE UCAT',KMSGCLASS=Y,</

jobCard01>
<jobCard02>//
</request>
</message>
</scope>
</service>

TIME=(,10) ,NOTIFY=USER24</jobCard02>

Exhibit 4-9. CMPONENT SERVICE RELINK <request> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.
NOTE: OK to omit trailing blanks.
<buildProc> Optional 0-1 String (8), 8-byte ZMF name for designated build
variable procedure.
<compileOptions> Optional 0-1 String (34), | Compile parameters not set elsewhere
variable (e.g. in component history) or by default.
<component> Required 1 String (256), | ZMF name of component to relink.
variable

« If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

243

Chapter 4: Component Management

Exhibit 4-9. CMPONENT SERVICE RELINK <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<componentType> Required 1 String (3), ZMF “like-source” library type of
fixed component to be recompile. Typical
values:
-COB
CPY
*SRC
<db2PreCompileLinkLib> Optional 0-1 String (44), | Data set name of DB2 library to be used
variable in build process.
<db2PreCompileVersion> Optional 0-1 String (64), | DB2 DBRM version to use when
variable recompiling components.
<db2SubSysteml|d> Optional 0-1 String (4), Physical subsystem ID of DB2 instance
variable to use in build.
<jobCard01> Required 1 String (72) JCL statements needed to set job
<jobCard02> Optional 0-1 String (72) | parameters, allocate data sets, & define
. . . library concatenations. <jobCard01> is
<jobCard03> Optional 0-1 String (72) required. Tags not needed for JCL may
<jobCard04> Optional 0-1 String (72) be omitted.
<language> Optional 0-1 String (8), Source language of component(s) to be
variable compiled. If omitted, ZMF retrieves from
component history.
<linkOptions> Optional 0-1 String (34), | Link edit parameters not set elsewhere
variable (e.g. in component history) or by default.
NOTE: The <useHistory> tag must be
set to N to use this tag.
<package> Required 1 String (10), | ZMF fixed-format package name where
variable component resides.
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as last
fixed 6 bytes of package name.
NOTE: Leading zeroes required.
<targetLoadLibType> Required 0-1 String (3), Target load library type.
variable
<useDb2PreCompileOption> | Optional 0-1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile DB2
<useHistory> Optional 0-1 String (1) Y = Yes, use comp hist for compile

params (default)
N = No, don’t use comp history

NOTE: This tag must be set to N to use
the <useDb2PreCompileOption>,
<compileOptions>, <linkOptions>,
<db2SubSystemld>,
<db2PreCompileLinkLib>, and
<db2PreCompileVersion> tags.

244

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-9. CMPONENT SERVICE RELINK <request> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<userOption01>

<userOption20>

Optional

0-1,
each

String (1)

Administrator-defined 1-byte user option
variables.

NOTE: See your ZMF application
administrator for information.

<userOption0101>

<userOption0105>

Optional

0-1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

<userOption0201>

<userOption0203>

Optional

0-1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

<userOption0301>

<userOption0303>

Optional

0-1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

<userOption0401>

<userOption0403>

Optional

0-1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

<userOption0801>

<userOption0805>

Optional

0-1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

<userOption1001>

<userOption1002>

Optional

0-1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

<userOption1601>

<userOption1602>

Optional

0-1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel for
component build.

<userOption3401>

<userOption3402>

Optional

0-1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

245

Chapter 4: Component Management

246

Exhibit 4-9. CMPONENT SERVICE RELINK <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<userOption4401> Optional 0-1 String (44), | Administrator-defined build options
each variable assigned to component. Each tag
corresponds to User Option 4401 to
. 4402 on the ISPF user options panel for
<userOption4402> component build.
<userOption6401> Optional 0-1 String (64), | Administrator-defined build options
. each variable assigned to component. Each tag
corresponds to User Option 6401 to
. 6405 on the ISPF user options panel for
<userOption6405> component build.
<userOption7201> Optional 0-1 String (72), | Administrator-defined build options
. each variable assigned to component. Each tag
corresponds to User Option 7201 to
. 7205 on the ISPF user options panel for
<userOption7205> component build.
<userOptionsPart1> Optional 0-1 String (10), | Administrator-defined component user
variable variables.
<userOptionsPart2> Optional 0-1 String (10), | Administrator-defined component user
variable variables.
<userPanel> Optional 0-1 String (8), User panel ID.
variable
<userVariable01> Optional 0-1 String (8), Administrator-defined 8-byte user
variable variables for recompile.
<userVariable05>
<userVariable06> Optional 0-1 String (72), | Administrator-defined 72-byte user
variable variables, if any, for use with recompile.

<userVariable10>

iy
S

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

iy
Pt

Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the

ChangeMan ZMF Customization Guide.

ChangeMan® ZMF XML Services User’s Guide

CMPONENT SERVICE RELINK Replies

No <result> data structure is returned in the component relink reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
relink request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

A successful request will generate a job with output similar to the following:

-STEPNAME PROCSTEP RC EXCP CONN TCB SRB

-SSIDN 00 91 46 .00 .00
-ALLOC 00 14 6 .00 .00
-ALLOCIN 00 38 19 .00 .00
-LINK 00 125 61 .00 .00
-BT90LOD 00 181 79 .00 .00
-COPYLOD 00 235 555 .00 .00
-SUCCESS 00 649 320 .00 .00
-CHKCOND 00 14 5 .00 .00
-FAILURE FLUSH 0 0 .00 .00
-PRINT 00 262 126 .00 .00
-COMPLST 00 137 110 .00 .00
-ILODLST 00 561 301 .00 .00

-XMLX035 ENDED. NAME-DEFINE UCAT
$HASP395 XMLX035 ENDED

TOTAL TCB

khkkhkhkkkhkkkhkkhkhkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkkhkkhkkhkkhkhkkhkkkxkx

* DDNAME: SSIDN.SYSPRINT
hhkkhkkkhkhkhkhkhkhhhhhkhkhhhhhhhhkhkhkkhhhkhkhhkhhhkhkhkkhhhkhkhkkkhhkhkkkkkhhhkhkkkhhhkkkkkhhk*x

ChangeMan (R)
PARM=""
SYSIN: LCT=ACPSRS00

SYSIN: SSI=5C6D1BOA

SYSIN: PKG=ACTP000014

SYSIN: RLK=Y

SYSIN: UIL=Y

SYSIN: OPT=CALL

Options compiled from PARM/SYSIN follow:

CMNSSIDN - 6.1.0 THURSDAY FEBRUARY 19, 2009 09:17:08

NAME - Allow "NAME" directive.

CALL - Allow "INCLUDE" directives.

RELINK - Re-Linkage-Edit by INCLUDEing again.
END OF DATA ON "OBJ" DETECTED

STAGING "LCT" OPENED

STAGING "LCT" MEMBER NOT FOUND

FABRICATING LCT CARDS FROM SCRATCH

<...+.... i N S B + .5.
LCT: INCLUDE INCLIB (ACPSRS00)

LCT: SETSSI 5C6D1BOA

LCT: NAME ACPSRSO00 (R)

247

Chapter 4: Component Management

248

khkkhkhkkhkhkkhkhkkhkhkkkhkkhkkhkkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkxk

* DDNAME: LINK.SYSPRINT
* DDNAME: BTO0LOD.BAT90LST

khkkhkhkkhkhkkhkhkkhkhkkkhkkhkkhkkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkxk

z/0S V1 R8 BINDER 09:17:09 THURSDAY FEBRUARY 19, 2009
BATCH EMULATOR JOB (XMLX035) STEP(LINK) PGM= IEWL
IEW2278I B352 INVOCATION PARAMETERS - LIST,XREF,MAP,RENT, NCAL

IEW2322I 1220 1 INCLUDE INCLIB (ACPSRS00)
IEW2322I 1220 2 SETSSI 5C6D1BOA
IEW2322I 1220 3 NAME ACPSRS00 (R)

IEW2650I 5102 MODULE ENTRY NOT PROVIDED. ENTRY DEFAULTS TO SECTION
ACPSRSO00.

khkkhkhkkhkhkkhkhkkhkhkkkhkkhkkhkkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkxk

* DDNAME: BTO90LOD.SYSPRINT

khkkhkhkkhkhkkhkhkkhkhkkkhkkhkkhkkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkxk

ChangeMan (R) CMNBATO90 - 6.1.0 THURSDAY FEBRUARY 19, 2009 09:17:10
SYSIN: PKG=ACTP000014

SYSIN: SLT=LOS

SYSIN: SLT=LOS

SYSIN: SNM=ACPSRSO00

SYSIN: SID=USER24

SYSIN: SSI=5C6D1BOA

SYSIN: PRC=CMNCOB2

SYSIN: RLK=YES

SYSIN: SUP=NO

SYSIN: LLT=LOD

SYSIN: SLB=ACTPLOSCMNTP.SERTS8.DEV.ACTP.#000014.L0S

SYSIN: SLB=ACTPLODCMNTP.SERT8.DEV.ACTP.#000014.L0OD

SYSIN: SLB=ACTPLOSCMNTP.SERT8.BASE.ACTP.LOS

SYSIN: SLB=ACTPLODCMNTP.SERTS8.BASE.ACTP.LOD

SYSIN: ILB=ACTPLOSCMNTP.SERTS8.DEV.ACTP.#000014.L0S

SYSIN: ILB=ACTPLOSCMNTP.SERTS8.BASE.ACTP.LOS

CMN5400I - Time of day at end of job: 09:17:11 - Condition Code on exit: 00

Browse a Component - CMPONENT SERVICE BROWSE

The Serena XML service/scope/message tags and attributes for component service browse
messages are:

<service name="CMPONENT”>
<scope name="SERVICE”>
<message name="BROWSE"”>

These tags appear in both requests and replies.

ChangeMan® ZMF XML Services User’s Guide

The component browse function of ChangeMan ZMF is actually a component download
function when accessed via XML. Replies come back as XML documents suitable for offline
browsing in a text editor or by XML-aware browser software.

CMPONENT SERVICE BROWSE Request

The example on the next page shows how you might code a component service browse
request in Serena XML. Data structure details for the browse <request> tag appear in
Exhibit 4-10.

Example XML — CMPONENT SERVICE BROWSE Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="BROWSE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000007</package>
<component>ACPCPY00</component>
<componentType>CPY</componentType>
<trim>¥Y</trim>
</request>
</message>
</scope>
</service>

Exhibit 4-10. CMPONENT SERVICE BROWSE <request> Data Structure

Data Type &
Subtag Use Instances Length Values
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.
NOTE: OK to omit trailing blanks.
<browseFromOption> Optional 1 String (1) Code for component library to browse.

Values:

1 = Browse from package

2 = Browse from baseline

3 = Browse from package if
found, otherwise from
baseline

NOTE: Options 1 and 3 require the
<package> tag to be specified.

249

Chapter 4: Component Management

250

Exhibit 4-10. CMPONENT SERVICE BROWSE <request> Data Structure (Continued)

Subtag Use

Instances

Data Type &
Length

Values

<component> Required

1

String (256),
variable

ZMF name of component to browse.

* If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required

String (3)

ZMF library type of component to
browse.

<hashToken> Optional

String (16)

ZMF-generated “fingerprint” of
component to browse. If component
has changed since the hash token was
generated, Serena XML returns a
warning.

<package> Required

String (10)

ZMF fixed-format package name
where component resides.
NOTE: This tag is required if
<browseFromOption> = 1 or 3.

<packageld> Optional

Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

<trim> Optional

String (1)

Define N if you do not want the trailing
blanks to be trimmed before </line> tag

NOTE: Defaultis Y.

CMPONENT SERVICE BROWSE Reply

The component service browse reply returns one <result> tag for the component
requested. Component contents are line-oriented in format; that is, each line of component
text is returned in its own <1ine> tag.

A standard <response> data structure follows the <result> tag, if any, to indicate the
success or failure of the browse request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the last data element returned
in a Serena XML reply message, the <response> tag serves as an end-of-list marker.

An example reply to a component service browse request follows.

Example XML — Component Service Browse Reply

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="BROWSE">
<result>

ChangeMan® ZMF XML Services User’s Guide

<line> * ACPCPY00.CAP</line>

<line> * ACPCPY00.CAP</line>

<line> 01 ACPCPYO0O0 PIC X(01l).</line>
</result>

<response>

<statusMessage>CMN8700I - Download service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Compare Components - CMPONENT SERVICE COMPARE

The Serena XML service/scope/message tags and attributes for component compare
messages are:

<service name="CMPONENT”>
<scope name="SERVICE”>
<message name="COMPARE">

These tags appear in both requests and replies.

CMPONENT SERVICE COMPARE Requests

You can use Serena XML to compare a component in the staging library against a like-named
component in any baseline or promotion library. The value in the <baselLibLevel> tag
specifies the baseline level (0 to -99) or promotion level (1 to 999) for the comparison.

The example below shows how you might code a request to compare a component in a
staged package with a baselined version of that component. Data structure details for the
compare <request> tag appear in Exhibit 4-11.

Example XML — CMPONENT SERVICE COMPARE Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="COMPARE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000001</package>
<component>ACPCPY00</component>
<componentType>CPY</componentType>
<baseLibLevel>001</baseLibLevel>

251

Chapter 4: Component Management

252

</request>
</message>
</scope>
</service>

Exhibit 4-11. CMPONENT SERVICE COMPARE <request> Data Structure

Data Type &

Subtag Use Instances Length Values

<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.

NOTE: OK to omit trailing blanks.

<baseLibLevel> Required 1 String (3), Baseline or promotion library level of
variable component compared against
component in staging.
Baseline range: 0 to -99
Promotion range: 1 to 999
<component> Required 1 String (256), | ZMF component to be compared.
variable * If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3), ZMF library type of component to be
fixed compared. Typical values:
+ COB
« CPY
«JCL
+LOD
* SRC
<package> Required 1 String (10), ZMF fixed-format package name where
variable component resides.
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.
NOTE: Leading zeroes required.

CMPONENT SERVICE COMPARE Replies

The component package browse reply returns one <result> tag, which contains the
component comparison report. Each line of the report is bracketed by a <11ine> tag.

Example XML — CMPONENT SERVICE COMPARE Reply

<?xml version="1.0"?>

<service name="CMPONENT" >
<scope name="SERVICE">

ChangeMan® ZMF XML Services User’s Guide

<message name="COMPARE">
<result>
<line>1 SERCMPAR (MVS - 560 - 20080929) 2 TEXTONLY FRIDAY
FEBRUARY 13, 2009 (2009/044) 08:36:47 PAGE 1</line>
<line>
SYSUT1=CMNTP.A013D.#C3BDFBA.#313AB10.WORKSRD (ACPCPY00) ,SYSUT2=CMNTP.SERT8.D
EV.TES5.#000001.CPY (ACPCPY00)</line>

<line>0 * ACPCPY00.CAP
ONE 1</line>
<line> * ACPCPY00.CAP

ONE 2</line>

<Lline>0++++++++ | +++. +H++1l++++ . ++++2++++ . +H++3++H++ . A +HH++ . 5+ 446
++++ . +++H+T+HH++ 8+ +4</ line>

<line>1I * ADDED 2/13/2009 8:35 AM
DIF TWO 3 +</line>
<line>

B o A o T o i o A E
++7++++ . ++++8+++++++++++++++++++++</1ine>
<line></line>
<line> 01 ACPCPYO0O0 PIC X(01).
ONE 3</line>
<1ine>0SER71I - END OF TEXT ON FILE SYSUT1</line>
<1ine>0SER72I - END OF TEXT ON FILE SYSUT2</line>
<line>-SER75I - RECORDS PROCESSED: SYSUT1(3)/
SYSUT2 (4) ,DIFFERENCES (0,0,1)</line>

<line> EXPLANATION - 0 RECORDS DIFFER THAT
SYNCHRONIZED TOGETHER</line>

<line> 0 RECORDS WERE CONSIDERED
INSERTED ON SYSUT1</line>

<line> 1 RECORD WAS CONSIDERED

INSERTED ON SYSUT2</line>
<line>1 SERCMPAR (MVS - 560 - 20080929) 2 TEXTONLY FRIDAY
FEBRUARY 13, 2009(2009/044) 08:36:47 PAGE 2</line>
<line>
SYSUT1=CMNTP.A013D.#C3BDFBA.#313AB10.WORKSRD, SYSUT2=CMNTP.SERTS8 .DEV.TES5. #0
00001.CPY</line>
<1line>0SER71I - END OF DIRECTORY ON FILE SYSUT1</line>
<1line>0SER72I - END OF DIRECTORY ON FILE SYSUT2</line>
<line>0SER78I - MEMBERS PROCESSED: SYSUT1(1)/
SYSUT2 (1) ,DIFFERENCES (1) ,REJECTED BY FILTERS: SYSUT1 (0)/SYSUT2 (0)</line>
<1ine>0SER80I - TIME OF DAY AT END OF JOB: 08:36:47 - CONDITION CODE ON
EXIT: 4</line>
</result>
<response>
<statusMessage>CMN8700I -Download servicecompleted</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>

253

Chapter 4: Component Management

</scope>

</service>

Rename a Component - CMPONENT SERVICE RENAME

The Serena XML service/scope/message tags and attributes for component rename
messages are:

<service name="CMPONENT”>
<scope name="SERVICE”>
<message name="RENAME”>

These tags appear in both requests and replies.

CMPONENT SERVICE RENAME Requests

The example below shows how you might code a component rename request in Serena
XML. Data structure details for the rename <request> tag appear in Exhibit 4-12.

Example XML — CMPONENT SERVICE RENAME Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="RENAME">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000009</package>
<componentType>CPY</componentType>
<oldComponent>ACPCPY1B</oldComponent>
<newComponent>ACPCPY2B</newComponent>
</request>
</message>

254

ChangeMan® ZMF XML Services User’s Guide

</scope>
</service>

Exhibit 4-12. CMPONENT SERVICE RENAME <request> Data Structure

Data Type &

Subtag Use Instances Length Values

<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.

NOTE: OK to omit trailing blanks.

<componentType> Required 1 String (3), ZMF library type of renamed
fixed component. Typical values:
+ COB
« CPY
«JCL
+LOD
* SRC
<newComponent> Required 1 String (256), | New ZMF name of renamed
variable component.

* If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<oldComponent> Required 1 String (256), | Old ZMF name of component to
variable rename.

* If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<package> Required 1 String (10), ZMF name of package where
variable component resides.

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

NOTE: Leading zeroes required.

CMPONENT SERVICE RENAME Replies

No <result> data structure is returned in the component rename reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
rename request. Successful requests have a return code of 00. Unsuccessful requests have

a return code of 04 or higher.

255

Chapter 4: Component Management

256

Scratch a Component - CMPONENT SERVICE SCRATCH

The Serena XML service/scope/message tags and attributes for component scratch
messages are:

<service name="CMPONENT">
<scope name="SERVICE”>
<message name=""SCRATCH”>

These tags appear in both requests and replies.

Component Scratch Requests

The example on the next page shows how you might code a component scratch request in
Serena XML. Data structure details for the scratch <request> tag appear in Exhibit 4-13,
following the example.

Example XML — CMPONENT SERVICE SCRATCH Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="SCRATCH">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000009</package>
<componentType>CPY</componentType>
<oldComponent>ACPCPY1C</oldComponent>
</request>
</message>
</scope>
</service>

Exhibit 4-13. CMPONENT SERVICE SCRATCH <request> Data Structure

Data Type &
Subtag Use Instances Length Values
<appIName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.
NOTE: OK to omit trailing blanks.

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-13. CMPONENT SERVICE SCRATCH <request> Data Structure (Continued)

Data Type &
Subtag Use Instances Length Values
<componentType> Required 1 String (3), ZMF library type of component to
fixed scratch. Typical values:
+ COB
« CPY
«JCL
+LOD
* SRC
<oldComponent> Required 1 String (256), | Name of component to scratch.
variable + If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<package> Required 1 String (10), ZMF name of package where
variable component resides.

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.

NOTE: Leading zeroes required.

CMPONENT SERVICE SCRATCH Replies

No <result> data structure is returned in the component scratch reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
scratch request. Successful requests have a return code of 00. Unsuccessful requests have
a return code of 04 or higher.

Lock or Unlock a Component - CMPONENT SERVICE LOCK/UNLOCK

The component lock and unlock functions in Serena XML share identical request and reply
data structures nested within their <service>, <scope>, and <message> tags. Only the
name attribute of the <message> tag differs.

The service/scope/message tags and attributes for component lock messages are:

<service name="CMPONENT”>
<scope name="SERVICE”>
<message name="LOCK”>

The service/scope/message tags and attributes for component unlock messages are:

<service name="CMPONENT”>
<scope name="SERVICE”>
<message name="UNLOCK">

These tags appear in both requests and replies.

257

Chapter 4: Component Management

CMPONENT SERVICE LOCK/UNLOCK Requests

The example below shows how you might code a component lock request in Serena XML. An
unlock request would be coded similarly, substituting the attribute name="unlock” in the
<message> tag. Data structure details for the <request> tag used in both component lock

and unlock messages appear in Exhibit 4-14.

Example XML — CMPONENT SERVICE LOCK Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SERVICE">
<message name="LOCK">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000001</package>
<component>ACPCPY00</component>
<componentType>CPY</componentType>
</request>
</message>
</scope>
</service>

Exhibit 4-14. CMPONENT SERVICE LOCK <request> Data Structure

Subtag Use Instances

Data Type &
Length

Values

<appIlName> Optional 0-1

String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<component> Required 1

String (256),
variable

ZMF name of component.

* If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1

String (3),
fixed

ZMF library type of component. Typical
values:

+COB
« CPY
«JCL
+LOD
* SRC

258

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-14. CMPONENT SERVICE LOCK <request> Data Structure (Continued)

Data Type &
Subtag Use Instances Length Values
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.
NOTE: Leading zeroes required.

CMPONENT SERVICE LOCK/UNLOCK Replies

No <result> data structure is returned in component lock or unlock reply messages.
However, the standard <response> data structure is returned to indicate the success or
failure of the lock request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

List Load Module Subroutines - CMPONENT LOD_SUBR LIST

The Serena XML service/scope/message tags and attributes for messages to /ist information
about load module subroutines are:

<service name="CMPONENT”>
<scope name="LOD_SUBR">
<message name="LIST”>

These tags appear in both requests and replies.

CMPONENT LOD_SUBR LIST Requests

The CMPONENT LOD_SUBR LIST request retrieves information about statically linked
subroutines within a load module.

The example below shows how you might code a component subroutine /list request in
Serena XML. Data structure details for the <request> tag appear in Exhibit 4-15.

Example XML — CMPONENT LOD_SUBR LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="LOD_ SUBR">
<message name="LIST">
<header>
<subsys>4</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000007</package>
<compositeComponent>ACPSRC1A</compositeComponent>
<compositeComponentType>LOD</compositeComponentType>
<sourceComponent>ACPSRC1A</sourceComponent>

259

Chapter 4: Component Management

<sourceComponentType>SRC</sourceComponentType>

</request>
</message>
</scope>
</service>

Exhibit 4-15. CMPONENT LOD_SUBR LIST <request> Data Structure

Data Type &
Subtag Use Instances | Length Values
<applName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.
NOTE: OK to omit trailing blanks.
<compositeComponent> Required 1 String (256), | ZMF name of load module.
variable « If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
NOTE: Component name may be
masked using standard wildcards.
<compositeComponentType> | Required 1 String (3), ZMF library type of composite
fixed component.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
<sourceComponent> Required 1 String (256), | ZMF name of source component.
variable « If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
NOTE: Component name may be
masked using standard wildcards.
<sourceComponentType> Required 1 String (3), ZMF library type of source
fixed component.

CMPONENT LOD_SUBR LIST Replies

The reply message listing information about a load module and its statically linked
subroutines returns zero to many <result> data elements. Each <result> tag contains

information about one subroutine within the composite component. This information includes
the subroutine name and type, the SETSSI value, and so on.

260

ChangeMan® ZMF XML Services User’s Guide

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT LOD_SUBR LIST Reply

<?xml version="1.0"?>
<service name='"CMPONENT">
<scope name="LOD_SUBR">
<message name="LIST">
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<compositeComponent>ACPSRC1A</compositeComponent>
<compositeComponentType>LOD</compositeComponentType>
<sourceComponent>ACPSRC1A</sourceComponent>
<sourceComponentType>SRC</sourceComponentType>
<compositeSetssi>61118F95</compositeSetssi>
<compositeFromIDR>Y</compositeFromIDR>
<subroutineComponent>ACPSRC1A</subroutineComponent>
<subroutineComponentAppl>ACTP</subroutineComponentAppl>
<subroutineComponentType>LOD</subroutineComponentType>
<subroutinePackage>ACTP000007</subroutinePackage>
<subroutineApplName>ACTP</subroutineApplName>
<subroutinePackageId>000007</subroutinePackageld>
<subroutineSetssi>61118F95</subroutineSetssi>
<subroutineFromIDR>Y</subroutineFromIDR>
</result>
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<compositeComponent>ACPSRC1A</compositeComponent>
<compositeComponentType>LOD</compositeComponentType>
<sourceComponent>ACPSRC1A</sourceComponent>
<sourceComponentType>SRC</sourceComponentType>
<compositeSetssi>61118F95</compositeSetssi>
<compositeFromIDR>Y</compositeFromIDR>
<subroutineComponent>ACPSRS1B</subroutineComponent>
<subroutineComponentAppl>ACTP</subroutineComponentAppl>
<subroutineComponentType>L0OS</subroutineComponentType>
<subroutinePackage>ACTP000007</subroutinePackage>
<subroutineApplName>ACTP</subroutineApplName>
<subroutinePackageId>000007</subroutinePackageld>
<subroutineSetssi>60AFD725</subroutineSetssi>
<subroutineFromIDR>Y</subroutineFromIDR>
</result>

261

Chapter 4: Component Management

<response>

<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>
</message>
</scope>
</service>

Data structure details for the <result> tag appear in Exhibit 4-16.

Exhibit 4-16. CMPONENT LOD_SUBR LIST <result> Data Structure

variable

Data Type &
Subtag Use Instances | Length Values
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.
<compositeComponent> Required 1 String (256), | ZMF name of load module.
variable » |f component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<compositeComponentType> | Required 1 String (3), ZMF library type of composite
fixed component.
<compositeFromIDR> Optional 0-1 String (1) Indicates if composite information is
from IDR.

Y = Yes, information is from IDR.

N = No, information is not from IDR.
<compositeHashToken> Optional 0-1 String (16) Composite hash token.
<compositeSetssi> Required 1 String (8) Composite SETSSI value.
<package> Required 1 String (10), Fixed-format ZMF package name.

fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
<sourceComponent> Required 1 String (256), | ZMF name of source component.

* If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

262

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-16. CMPONENT LOD_SUBR LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Instances | Length Values
<sourceComponentType> Required 1 String (3), ZMF library type of source
fixed component.
<subroutineAppIName> Optional 0-1 String (4), ZMF application name of subroutine.
variable
<subroutineComponent> Required 1 String (256), | ZMF name of subroutine component.
variable + |f component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<subroutineComponentAppl> | Required 1 String (4), ZMF application name of subroutine
variable component.
<subroutineComponentType> | Required 1 String (3), ZMF library type of subroutine
fixed component.
<subroutineFromIDR> Optional 0-1 String (1) Indicates if subroutine information is
from IDR.

Y = Yes, information is from IDR.

N = No, information is not from IDR.
<subroutineHashToken> Optional 0-1 String (16) Subroutine hash token.
<subroutinePackage> Required 1 String (10), Fixed-format ZMF package name of

fixed subroutine.
<subroutinePackageld> Optional 0-1 Integer (6), ZMF package ID number of
fixed subroutine.
<subroutineRelease> Optional 1 String (8), Subroutine release name.
variable
<subroutineReleaseArea> Optional 1 String (8), Subroutine release area name.
variable
<subroutineSetssi> Required 1 String (8) Subroutine SETSSI value.

List Copybook Names in Source - CMPONENT SRC_INCL LIST

The Serena XML service/scope/message tags and attributes for messages to /ist information
about copybooks included within a source component are:

<service name="CMPONENT”>
<scope name="SRC_INCL">
<message name="LIST”>

These tags appear in both requests and replies.

263

Chapter 4: Component Management

CMPONENT SRC_INCL LIST Requests

The example below shows how you might code a CMPONENT SRC_INCL LIST request in
Serena XML. Data structure details for the <request> tag appear in Exhibit 4-17.

Example XML — CMPONENT SRC_INCL LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">

<scope name="SRC_INCL">
<message name="LIST">

<header>

<subsys>4</subsys>

<product>CMN</product>

</header>
<request>

<package>ACTP000007</package>
<sourceComponent>ACPSRC1A</sourceComponent>
<sourceComponentType>SRC</sourceComponentType>

</request>
</message>
</scope>
</service>

Exhibit 4-17. CMPONENT SRC_INCL LIST <request> Data Structure

Data Type &
Subtag Use Instances | Length Values
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.
NOTE: OK to omit trailing blanks.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeros required.
<sourceComponent> Required 1 String (256), | ZMF name of source component.
variable * If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
NOTE: Component name may be
masked using standard wildcards.
<sourceComponentType> Required 1 String (3), ZMF library type of source
fixed component.

264

ChangeMan® ZMF XML Services User’s Guide

CMPONENT SRC_INCL LIST Replies

The reply message listing information about a source component and its included copybooks
returns zero to many <result> data elements. Each <result> tag contains information
about one copybook within the source component. This information includes the copybook
name and type, the version, and so on.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT SRC_INCL LIST Reply

<?xml version="1.0"?>
<service name='"CMPONENT">
<scope name="SRC_INCL">
<message name="LIST">
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<sourceComponent>ACPSRC1A</sourceComponent>
<setssi>61118FA5</setssi>
<srcHashToken>6E1E9BDD0000035A</srcHashToken>
<includedVersion>01</includedVersion>
<includedModLevel>01</includedModLevel>
<includedHashToken>6721849B000000A3</includedHashToken>
<includedApplName>ACTP</includedApplName>
<includedComponentType>CPY</includedComponentType>
<includedComponent>ACPCPY00</includedComponent>
</result>
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<sourceComponent>ACPSRC1A</sourceComponent>
<sourceComponentType>SRC</sourceComponentType>
<setssi>61118FA5</setssi>
<srcHashToken>6E1E9BDD0000035A</srcHashToken>
<includedVersion>01</includedVersion>
<includedModLevel>01</includedModLevel>
<includedHashToken>BDC5C909000000BE</includedHashToken>
<includedApplName>ACTP</includedApplName>
<includedComponentType>CPY</includedComponentType>
<includedComponent>ACPCPY1A</includedComponent>
</result>

<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>

265

Chapter 4: Component Management

<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>
</message>
</scope>
</service>

Data structure details for the <result> tag appear in Exhibit 4-18.

Exhibit 4-18. CMPONENT SRC_INCL LIST <result> Data Structure

Data Type &
Subtag Use Instances | Length Values
<applName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.
<includedAppIName> Required String (4), ZMF application name of included
variable component.
<includedComponent> Required 1 String (256), | ZMF name of included component.
variable + If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<includedComponentType> Required 1 String (3), ZMF library type of included
fixed component.
<includedHashToken> Required 1 String (16) Hash token of included component.
<includedModLevel> Required 1 Integer (2), Modification level of included
fixed component.
<includedVersion> Required 1 Integer (2), Version of included component.
fixed
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
<release> Optional 0-1 String (8), Release name.
variable
<releaseArea> Optional 0-1 String (8), Release area name.
variable
<setssi> Required 1 String (8) SETSSI value of source component.

266

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-18. CMPONENT SRC_INCL LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Instances | Length Values
<sourceComponent> Required 1 String (256), | ZMF name of source component.
variable + If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<sourceComponentType> Required 1 String (3), ZMF library type of source
fixed component.
<srcHashToken> Required 1 String (16) Hash token of source component.

Count copybook names used by source (baseline I/A or package
records) — CMPONENT SRC_INCL COUNT

This function is different to the standard list message (above) in that it works with both
baseline I/A information as well as package data. If the target source component is in
CHECKOUT status, the function will use baseline I/A information. If it is ACTIVE, it will use
the package copybook records to fulfill the request.

The Serena XML service/scope/message tags and attributes for messages to count
copybooks used by the source component are:

<service name="CMPONENT”>
<scope name="SRC_INCL”>
<message name="COUNT”>

These tags appear in both requests and replies.

CMPONENT SRC_INCL COUNT Requests

The example below shows how you might code a CMPONENT SRC_INCL COUNT request
in Serena XML. Data structure details for the <request> tag appear in CMPONENT
SRC _INCL COUNT <request> Data Structure.

Example XML — CMPONENT SRC_INCL COUNT Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SRC_INCL">
<message name="COUNT">
<header>
<subsys>4</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPOOOOO7</package>

267

Chapter 4: Component Management

<sourceComponent>ACPSRC1A</sourceComponent>

<sourceComponentType>SRC</sourceComponentType>
<lowerCopybookNameMask>
<upperCopybookNameMask>

</request>
</message>
</scope>
</service>

</lowerCopybookNameMask>
</upperCopybookNameMask>

Exhibit 4-19 CMPONENT SRC_INCL COUNT <request> Data Structure

Data Type &
Subtag Use Instances | Length Values
<package> Required 1 String(10), Fixed-format ZMF package
fixed name
<sourceComponent> Required 1 String(256), ZMF name of source component.
variable « If component is PDS member,
this is member name (max 8
bytes, no qualifiers).
» If component is HFS file, this is
Unix-style long file name,
optionally prefixed by path from
installation root.
NOTE: The name must be
specific, no masking.
<sourceComponentType> Required 1 String(3), fixed | ZMF library type of source
component
<lowerCopybookNameMask> | Optional 0-1 String(256), Lower bound name mask
variable (explicit name or terminate with
asterisk) for range of copybooks
to be considered.
NOTE: Leave blank for full list
<upperCopybookNameMask> | Optional 0-1 String(256), Upper bound name mask
variable (explicit name or terminate with

asterisk) for range of copybooks
to be considered.

NOTE: Leave blank for full list

CMPONENT SRC_INCL COUNT Replies

The reply message listing information about a source component and the number of its
included copybooks returns one <result> data element. The <result> tag contains
information about the number of copybooks included by the source component (subject to
any lower/upper name masks).

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

268

ChangeMan® ZMF XML Services User’s Guide

Example XML — CMPONENT SRC_INCL COUNT Reply

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SRC_INCL">
<message name="COUNT">
<result>
<includedTotal>00000140</includedTotal>
</result>
<response>
<statusMessage>CMN8700I - COUNT service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 4-20 CMPONENT SRC_INCL COUNT <result> Data Structure

Data Type &
Subtag Use Instances | Length Values
<includedTotal> Required 1 Integer(8), Count of copybooks included by
fixed this source component (subject
to any copybook name masking
requirements)

List copybook names used by source (baseline I/A or package
records) — CMPONENT SRC_INCL NOLOCATE

This function is different to the standard list message (above) in that it works with both
baseline I/A information as well as package data. If the target source component is in
CHECKOUT status the function will use baseline I/A information. If it is ACTIVE then it will
use the package copybook records to fulfill the request. This request will not obtain physical
inventory location information (i.e. “no locate”) and is much more effective (in terms of
resources used) than the following “locate” request.

The Serena XML service/scope/message tags and attributes for messages to list with
nolocate copybooks used by the source component are:

<service name="CMPONENT”>
<scope name="SRC_INCL”>
<message name="NOLOCATE”>

These tags appear in both requests and replies.

269

Chapter 4: Component Management

270

CMPONENT SRC_INCL NOLOCATE Requests

The example below shows how you might code a CMPONENT SRC_INCL NOLOCATE
request in Serena XML. Data structure details for the <request> tag appear in

CMPONENT SRC_INCL NOLOCATE <request> Data Structure.

Example XML — CMPONENT SRC_INCL NOLOCATE Request

<?xml version="1.0"?>

<service name="CMPONENT">
<scope name="SRC_INCL">
<message name="NOLOCATE">

<header>

<subsys>4</subsys>

<product>CMN</product>

</header>
<request>

<package>ACTPOOOOO7</package>
<sourceComponent>ACPSRC1A</sourceComponent>

<sourceComponentType>SRC</sourceComponentType>
<lowerCopybookNameMask>
<upperCopybookNameMask>

</request>
</message>
</scope>
</service>

</lowerCopybookNameMask>
</upperCopybookNameMask>

Exhibit 4-21 CMPONENT SRC_INCL NOLOCATE <request> Data Structure

Data Type &
Subtag Use Instances | Length Values
<package> Required 1 String(10), Fixed-format ZMF package name
fixed
<sourceComponent> Required 1 String(256), ZMF name of source component.
variable « If component is PDS member,
this is member name (max 8
bytes, no qualifiers).
« If component is HFS file, this is
Unix-style long file name,
optionally prefixed by path from
installation root.
NOTE: The name must be
specific, no masking.
<sourceComponentType> Required 1 String(3), fixed | ZMF library type of source

component

ChangeMan® ZMF XML Services User’s Guide

Data Type &
Subtag Use Instances | Length Values
<lowerCopybookNameMask> | Optional 0-1 String(256), Lower bound name mask
variable (explicit name or terminate with
asterisk) for range of copybooks
to be considered.
NOTE: Leave blank for full list
<upperCopybookNameMask> | Optional 0-1 String(256), Upper bound name mask
variable (explicit name or terminate with
asterisk) for range of copybooks
to be considered.
NOTE: Leave blank for full list

CMPONENT SRC_INCL NOLOCATE Replies

The reply message listing information about a source component and its included copybooks
returns zero to many <result> data elements. Each <result> tag contains information
about one copybook within the source component. This information includes the copybook
name and type, its application, and the total number of copybooks reported.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT SRC_INCL NOLOCATE Reply

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SRC_INCL">
<message name="NOLOCATE">
<result>
<includedTotal>00000140</includedTotal>
<includedApplName>ACTP</includedApplName>
<includedComponentType>CPY</includedComponentType>
<includedComponent>ACPCPY00O</includedComponent>
</result>
<result>
<includedTotal>00000140</includedTotal>
<includedApplName>ACTP</includedApplName>
<includedComponentType>CPY</includedComponentType>
<includedComponent>ACPCPY1A</includedComponent>
</result> </message>

<response>

<statusMessage>CMN8700I - NOLOCATE service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>

271

Chapter 4: Component Management

272

</message>
</scope>
</service>

Exhibit 4-22 CMPONENT SRC_INCL NOLOCATE <result> Data Structure

Data Type &
Subtag Use Instances | Length Values
<includedTotal> Required 1 Integer(8), Count of copybooks included by
fixed this source component (subject
to any copybook name masking
requirements)
<includedAppIName> Required 1 String(4), fixed | ZMF application associated with
this copybook
<includedComponentType> Required 1 String(3), fixed | ZMF library type associated with
this copybook
<includedComponent> Required 1 String(256), ZMF name of included
variable component.

* If component is PDS member,
this is member name (max 8
bytes, no qualifiers).

« If component is HFS file, this is
Unix-style long file name,
optionally prefixed by path from
installation root.

List copybook names used by source (baseline I/A or package
records) — CMPONENT SRC_INCL LOCATE

This function is different to the standard list message (above) in that it works with both
baseline I/A information as well as package data. If the target source component is in
CHECKOUT status the function will use baseline I/A information. If it is ACTIVE then it will
use the package copybook records to fulfill the request. This request obtains physical
inventory location information and is more resource intensive than the previous NOLOCATE

request.

The Serena XML service/scope/message tags and attributes for messages to list with locate
copybooks used by the source component are:

<service name="CMPONENT”>

<scope name="SRC_INCL”>
<message name="LOCATE”>

These tags appear in both requests and replies.

ChangeMan® ZMF XML Services User’s Guide

CMPONENT SRC_INCL LOCATE Requests

The example below shows how you might code a CMPONENT SRC_INCL LOCATE request
in Serena XML. Data structure details for the <request> tag appear in CMPONENT
SRC_INCL LOCATE <request> Data Structure.

Example XML — CMPONENT SRC_INCL LOCATE Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SRC_INCL">
<message name="LOCATE">
<header>
<subsys>4</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTPOOOOO7</package>
<sourceComponent>ACPSRC1A</sourceComponent>
<sourceComponentType>SRC</sourceComponentType>

<lowerCopybookNameMask> </1lowerCopybookNameMask>
<upperCopybookNameMask> </upperCopybookNameMask>
</request>

</message>

</scope>

</service>

Exhibit 4-23 CMPONENT SRC_INCL LOCATE <request> Data Structure

Data Type &
Subtag Use Instances | Length Values
<package> Required 1 String(10), Fixed-format ZMF package name
fixed
<sourceComponent> Required 1 String(256), ZMF name of source component.
variable « If component is PDS member,
this is member name (max 8
bytes, no qualifiers).
« If component is HFS file, this is
Unix-style long file name,
optionally prefixed by path from
installation root.
NOTE: The name must be
specific, no masking.
<sourceComponentType> Required 1 String(3), fixed | ZMF library type of source
component

273

Chapter 4: Component Management

274

Data Type &
Subtag Use Instances | Length Values
<lowerCopybookNameMask> | Optional 0-1 String(256), Lower bound name mask
variable (explicit name or terminate with
asterisk) for range of copybooks
to be considered.
NOTE: Leave blank for full list
<upperCopybookNameMask> | Optional 0-1 String(256), Upper bound name mask
variable (explicit name or terminate with
asterisk) for range of copybooks
to be considered.
NOTE: Leave blank for full list

CMPONENT SRC_INCL LOCATE Replies

The reply message listing information about a source component and its included copybooks
returns zero to many <result> data elements. Each <result> tag contains information
about one copybook within the source component. This information includes the copybook
name and type, its application, specific information about the first found inventory location of
the copybook, and the total number of copybooks reported..

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT SRC_INCL LOCATE Reply

<?xml version="1.0"?7>
<service name="CMPONENT">
<scope name="SRC_INCL">
<message name="LOCATE">
<result>
<includedTotal>00000140</includedTotal>
<whereFrom>B</whereFrom>
<includedApplName>ACTP</includedApplName>
<includedComponentType>CPY</includedComponentType>
<includedComponent>ACPCPYQ0O</includedComponent>
<includedComponentLocation>CMNDEV.BASE.CPY</includedComponentLocation>
</result>
<result>
<includedTotal>00000140</includedTotal>
<whereFrom>P</whereFrom>
<includedApplName>ACTP</includedApplName>
<includedComponentType>CPY</includedComponentType>
<includedComponent>ACPCPY1A</includedComponent>
<includedComponentLocation>CMNDEV.UNIT.CPY</includedComponentLocation>
</result> </message>

<response>

ChangeMan® ZMF XML Services User’s Guide

<statusMessage>CMN8700I - LOCATE service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>
</message>
</scope>
</service>

Subtag

Use

Instances

Data Type &
Length

Values

<includedTotal>

Required

1

Integer(8),
fixed

Count of copybooks included by
this source component (subject
to any copybook name masking
requirements)

<wherefrom>

Required

String(1), fixed

Where this copybook was first
found (general inventory location
identifier)

» S —staging library

* P — promotion library

* B — baseline library

* R —release area library

<includedAppIName>

Required

String(4), fixed

ZMF application associated with
this copybook

<includedComponentType>

Required

String(3), fixed

ZMF library type associated with
this copybook

<includedComponent>

Required

String(256),
variable

ZMF name of included
component.

* If component is PDS member,
this is member name (max 8
bytes, no qualifiers).

« If component is HFS file, this is
Unix-style long file name,
optionally prefixed by path from
installation root.

<includedComponentLocation
>

Required

String(1024),
variable

The specific library (or zFS
directory) where the copybook
was first found.

Staging version functions for general use include the following:

» List Component Staging Versions - CMPONENT SSV_VER LIST
* Retrieve Component Staging Version - CMPONENT SSV_VER RETRIEVE

COMPONENT STAGING VERSION MANAGEMENT

275

Chapter 4: Component Management

List Component Staging Versions - CMPONENT SSV_VER LIST

The Serena XML service/scope/message tags and attributes for messages to list all staging
versions of a component are:

<service name="CMPONENT">
<scope name="SSV_VER">
<message name="LIST”>

These tags appear in both requests and replies.

CMPONENT SSV_VER LIST — Requests

The example below shows how you might code a request to list the staging versions of a
component. Staging versions may be listed for only one component per request. Data
structure details for the list staging versions <request> tag appear in Exhibit 4-24, following
the example.

Example XML — CMPONENT SSV_VER LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="SSV_VER">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>CISQ000030</package>
<componentType>SRC</componentType>
<component>CI2Q101</component>
</request>
</message>
</scope>
</service>

276

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-24. CMPONENT SSV_VER LIST <request> Data Structure

Data Type &

Subtag Use Instances Length Values

<appIlName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.

NOTE: OK to omit trailing blanks.

<component> Required 1 String (256), | ZMF name of component.
variable « If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

* If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3), ZMF library type of component. Must
fixed be editable source code (RECFM not

‘U’). Values:

+ COB
« CPY
«JCL
* SRC
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.
NOTE: Leading zeroes required.

CMPONENT SSV_VER LIST — Replies

The Serena XML reply message to a component staging versions list request contains zero
to many <result> tags. Each <result> contains information about one previously staged
version of the requested component. The <result> tag repeats for each staging version of
the component.

The standard <response> data structure follows the final <result> tag and indicates the
success or failure of the list request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the final data element in the
reply, the <response> tag also serves as an end-of-list marker.

An example reply to a list staging versions request follows. Data structure details for the list
<result> tag appear in Exhibit 4-25.

Example XML — CMPONENT SSV_VER LIST Reply

<?xml version="1.0"?>

<service name='"CMPONENT">
<scope name="SSV_VER">
<message name="LIST">

277

Chapter 4: Component Management

278

<result>
<versionLocation>2</versionLocation>
<lastUpdater>USER24</lastUpdater>
<dateLastModified>20081126</dateLastModified>
<timeLastModified>100700</timeLastModified>
<changeDesc>BIG SETQUERY PACKAGE</changeDesc>
<ispfUser>USER24</ispfUser>
<ispfDateLastModified>20081126</ispfDateLastModified>
<ispfTimeLastModified>095100</ispfTimeLastModified>
<ispfUpdateSize>00094</ispfUpdateSize>
<ispfVersion>001</ispfVersion>
<ispfModLevel>001</ispfModLevel>
<ispfInitialDate>20080118</ispfInitialDate>
<ispfInitialSize>00090</ispfInitialSize>
<ispfModSize>00000</ispfModSize>
</result>
<result>
<versionLocation>4</versionLocation>
<lastUpdater>USER24</lastUpdater>
<dateLastModified>20081126</dateLastModified>
<timeLastModified>095100</timeLastModified>
<changeDesc>Baseline version</changeDesc>
<ispfUser>USER24</ispfUser>
<ispfDateLastModified>20081126</ispfDateLastModified>
<ispfTimelLastModified>095100</ispfTimeLastModified>
<ispfUpdateSize>00094</ispfUpdateSize>
<ispfVersion>001</ispfVersion>
<ispfModLevel>001</ispfModLevel>
<ispfInitialDate>20080118</ispfInitialDate>
<ispfInitialSize>00090</ispfInitialSize>
<ispfModSize>00000</ispfModSize>
</result>
<response>
<statusMessage>CMN8700I - SSV service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>

</message>

</scope>

</service>

Exhibit 4-25. CMPONENT SSV_VER LIST <result> Data Structure

Data Type &

Subtag Use Instances Length Values

<backupDate> Optional 0-1 Date, Date component version was last
yyyymmdd backed up.

<backupTime> Optional 0-1 Time, Time component version was last
hhmmss backed up, 24-hour format.

ChangeMan® ZMF XML Services User’s Guide

Exhibit 4-25. CMPONENT SSV_VER LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Instances Length Values
<backupUser> Optional 0-1 String (8), TSO user ID of most recent user to
variable back up component version.
<changeDesc> Optional 0-1 String (35), Text description of changes made in
variable this version of component.
<datelLastModified> Optional 0-1 Date, Date component version was last
yyyymmdd changed.
<fileFormat> Optional 0-1 Integer (1) For regular HFS files, the Unix numeric
code for data organization and record
delimiter. Allowed values:
0© = Not specified
1 = Binary data
2 = New line (NL)
3 = Carriage return (CR)
4 = Line feed (LF)
5 = CR&LF
6 = LF&CR
7 = CR&NL
NOTE: Always supplied for HFS data
files. Irrelevant and omitted for HFS
directories, links or aliases, pipes, or
sockets, or for non-HFS components.
<ispfDateLastModified> Optional 0-1 Date, Date component version was last
yyyymmdd changed or staged by ISPF user.
<ispflnitialDate> Optional 0-1 Date, Date component version was created.
yyyymmdd
<ispflnitialSize> Optional 0-1 Integer (5), Lines of code in version before
variable change.
<ispfModLevel> Optional 0-1 Integer (3), ISPF 2-byte modification level for
variable component when last staged.
<ispfModSize> Optional 0-1 Integer (5), Lines of code changed in version.
variable
<ispfTimeLastModified> Optional 0-1 Time, Time component version was last
hhmmss changed or staged by ISPF user, 24-
hour format.
<ispfUpdateSize> Optional 0-1 Integer (5), Lines of code in version after change.
variable
<ispfUser> Optional 0-1 String (8), TSO user ID of last ISPF user to
variable change or stage this component when
it was the STG version.
<ispfVersion> Optional 0-1 Integer (3), ISPF 2-byte version number for
variable component when last staged.

279

Chapter 4: Component Management

Exhibit 4-25. CMPONENT SSV_VER LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Instances Length Values
<lastUpdater> Optional 0-1 String (8), TSO user ID of last component updater
variable for this version.
<permissions> Optional 0-1 Integer (3), Unix access permissions for HFS file
fixed or directory, coded as 3-digit integer,
where:
1st digit = owner permissions
2nd digit = group permissions
3rd digit = permissions for all others
Each digit takes one of the following
values:
7 - Read, write/rename/delete,
execute
6 - Read, write/rename/delete
5 - Read, execute
4 - Read only
3 - Write/rename/delete, execute
2 - Write/rename/delete only
1 - Execute only
0 - No access permitted
NOTE: Always listed for HFS
components. Irrelevant and omitted for
non-HFS components.
<promotionLevel> Optional 0-1 Integer (4), ZMF promotion level to which this
variable component was last promoted when it
was the STG version.
<promotionName> Optional 0-1 String (8), ZMF name of promotion level
variable corresponding to level number in
<promotionLevel>.
<promotionSiteName> Optional 0-1 String (8), ZMF name of site to which this
variable component was last promoted when it
was the STG version.
<timeLastModified> Optional 0-1 Time, Time component version was last
hhmmss changed, 24-